(G,P)-opers and global Slodowy slices
In this paper, we introduce a generalization of G-opers for arbitrary parabolic subgroups P<G of a complex semisimple Lie group. For parabolic subgroups associated to “even nilpotents”, we parameterize (G,P)-opers by an object generalizing the base of the Hitchin fibration. In particular, we desc...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Advances in mathematics
Year: 2021, Jahrgang: 377, Pages: 1-43 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2020.107490 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2020.107490 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870820305181 |
| Verfasserangaben: | Brian Collier, Andrew Sanders |
| Zusammenfassung: | In this paper, we introduce a generalization of G-opers for arbitrary parabolic subgroups P<G of a complex semisimple Lie group. For parabolic subgroups associated to “even nilpotents”, we parameterize (G,P)-opers by an object generalizing the base of the Hitchin fibration. In particular, we describe and parameterize families of opers associated to higher Teichmüller spaces. |
|---|---|
| Beschreibung: | Available online 9 November 2020 Gesehen am 17.02.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2020.107490 |