Bayesian networks for sex-related homicides: structure learning and prediction

Sex-related homicides tend to arouse wide media coverage and thus raise the urgency to find the responsible offender. However, due to the low frequency of such crimes, domain knowledge lacks completeness. We have therefore accumulated a large data-set and apply several structural learning algorithms...

Full description

Saved in:
Bibliographic Details
Main Authors: Stahlschmidt, Stephan (Author) , Tausendteufel, Helmut (Author) , Härdle, Wolfgang (Author)
Format: Article (Journal)
Language:English
Published: 2013
In: Journal of applied statistics
Year: 2013, Volume: 40, Issue: 6, Pages: 1155-1171
ISSN:1360-0532
DOI:10.1080/02664763.2013.780235
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/02664763.2013.780235
Verlag, lizenzpflichtig, Volltext: https://www.tandfonline.com/doi/full/10.1080/02664763.2013.780235?scroll=top&needAccess=true
Get full text
Author Notes:Stephan Stahlschmidt, Helmut Tausendteufel, Wolfgang K. Härdle

MARC

LEADER 00000caa a22000002c 4500
001 1789584159
003 DE-627
005 20220820130654.0
007 cr uuu---uuuuu
008 220215s2013 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2013.780235  |2 doi 
035 |a (DE-627)1789584159 
035 |a (DE-599)KXP1789584159 
035 |a (OCoLC)1341441568 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 14  |2 sdnb 
100 1 |a Stahlschmidt, Stephan  |e VerfasserIn  |0 (DE-588)1019471255  |0 (DE-627)690913575  |0 (DE-576)358141702  |4 aut 
245 1 0 |a Bayesian networks for sex-related homicides  |b structure learning and prediction  |c Stephan Stahlschmidt, Helmut Tausendteufel, Wolfgang K. Härdle 
264 1 |c 2013 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 19 Mar 2013 
500 |a Gesehen am 15.02.2022 
520 |a Sex-related homicides tend to arouse wide media coverage and thus raise the urgency to find the responsible offender. However, due to the low frequency of such crimes, domain knowledge lacks completeness. We have therefore accumulated a large data-set and apply several structural learning algorithms to the data in order to combine their results into a single general graphic model. The graphical model broadly presents a distinction between an offender and a situation-driven crime. A situation-driven crime may be characterised by, amongst others, an offender lacking preparation and typically attacking a known victim in familiar surroundings. On the other hand, offender-driven crimes may be identified by the high level of forensic awareness demonstrated by the offender and the sophisticated measures applied to control the victim. The prediction performance of the graphical model is evaluated via a model averaging approach on the outcome variable offender's age. The combined graph undercuts the error rate of the single algorithms and an appropriate threshold results in an error rate of less than 10%, which describes a promising level for an actual implementation by the police. 
650 4 |a 62-09 
650 4 |a 62P25 
650 4 |a Bayesian networks 
650 4 |a C49 
650 4 |a C81 
650 4 |a criminal event perspective 
650 4 |a ensemble learning 
650 4 |a K42 
650 4 |a model averaging 
650 4 |a offender profiling 
700 1 |a Tausendteufel, Helmut  |d 1960-  |e VerfasserIn  |0 (DE-588)118202170  |0 (DE-627)079303218  |0 (DE-576)178264687  |4 aut 
700 1 |a Härdle, Wolfgang  |d 1953-  |e VerfasserIn  |0 (DE-588)110357116  |0 (DE-627)546377173  |0 (DE-576)165333545  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d Abingdon [u.a.] : Taylor & Francis, Taylor & Francis Group, 1974  |g 40(2013), 6, Seite 1155-1171  |h Online-Ressource  |w (DE-627)270130462  |w (DE-600)1476802-1  |w (DE-576)263252973  |x 1360-0532  |7 nnas  |a Bayesian networks for sex-related homicides structure learning and prediction 
773 1 8 |g volume:40  |g year:2013  |g number:6  |g pages:1155-1171  |g extent:17  |a Bayesian networks for sex-related homicides structure learning and prediction 
856 4 0 |u https://doi.org/10.1080/02664763.2013.780235  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.tandfonline.com/doi/full/10.1080/02664763.2013.780235?scroll=top&needAccess=true  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220215 
993 |a Article 
994 |a 2013 
998 |g 1019471255  |a Stahlschmidt, Stephan  |m 1019471255:Stahlschmidt, Stephan  |d 700000  |d 717000  |e 700000PS1019471255  |e 717000PS1019471255  |k 0/700000/  |k 1/700000/717000/  |p 1  |x j 
999 |a KXP-PPN1789584159  |e 4059828157 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Bayesian networks for sex-related homicides","subtitle":"structure learning and prediction","title":"Bayesian networks for sex-related homicides"}],"person":[{"role":"aut","display":"Stahlschmidt, Stephan","roleDisplay":"VerfasserIn","given":"Stephan","family":"Stahlschmidt"},{"family":"Tausendteufel","given":"Helmut","display":"Tausendteufel, Helmut","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Härdle, Wolfgang","roleDisplay":"VerfasserIn","given":"Wolfgang","family":"Härdle"}],"note":["Published online: 19 Mar 2013","Gesehen am 15.02.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1789584159","origin":[{"dateIssuedDisp":"2013","dateIssuedKey":"2013"}],"id":{"doi":["10.1080/02664763.2013.780235"],"eki":["1789584159"]},"name":{"displayForm":["Stephan Stahlschmidt, Helmut Tausendteufel, Wolfgang K. Härdle"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1360-0532"],"zdb":["1476802-1"],"eki":["270130462"]},"origin":[{"publisherPlace":"Abingdon [u.a.] ; Basingstoke [u.a.] ; London [u.a.]","dateIssuedDisp":"1974-","dateIssuedKey":"1974","publisher":"Taylor & Francis, Taylor & Francis Group ; Carfax ; Routledge"}],"language":["eng"],"recId":"270130462","note":["Gesehen am 13.03.15"],"disp":"Bayesian networks for sex-related homicides structure learning and predictionJournal of applied statistics","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Bulletin in applied statistics"}],"part":{"year":"2013","issue":"6","pages":"1155-1171","volume":"40","text":"40(2013), 6, Seite 1155-1171","extent":"17"},"pubHistory":["1.1974 -"],"title":[{"title":"Journal of applied statistics","title_sort":"Journal of applied statistics"}]}]} 
SRT |a STAHLSCHMIBAYESIANNE2013