Missing link survival analysis with applications to available pandemic data

It is shown how to overcome a new missing data problem in survival analysis. Iterative nonparametric techniques are utilized and the missing data information is both estimated and used for further estimation in each iterative step. Theory is developed and a good finite sample performance is illustra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gámiz, María Luz (VerfasserIn) , Mammen, Enno (VerfasserIn) , Martinez Miranda, Maria Dolores (VerfasserIn) , Nielsen, Jens Perch (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Computational statistics & data analysis
Year: 2022, Jahrgang: 169, Pages: 1-18
DOI:10.1016/j.csda.2021.107405
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.csda.2021.107405
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0167947321002395
Volltext
Verfasserangaben:María Luz Gámiz, Enno Mammen, María Dolores Martínez-Miranda, Jens Perch Nielsen
Beschreibung
Zusammenfassung:It is shown how to overcome a new missing data problem in survival analysis. Iterative nonparametric techniques are utilized and the missing data information is both estimated and used for further estimation in each iterative step. Theory is developed and a good finite sample performance is illustrated by simulations. The main motivation is an application to French data on the temporal development of the number of hospitalized Covid-19 patients.
Beschreibung:Available online 13 December 2021
Gesehen am 01.03.2022
Beschreibung:Online Resource
DOI:10.1016/j.csda.2021.107405