Gaussian local phase approximation in a cylindrical tissue model
In NMR or MRI, the measured signal is a function of the accumulated magnetization phase inside the measurement voxel, which itself depends on microstructural tissue parameters. Usually the phase distribution is assumed to be Gaussian and higher-order moments are neglected. Under this assumption, onl...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
20 May 2021
|
| In: |
Frontiers in physics
Year: 2021, Jahrgang: 9, Pages: 1-13 |
| ISSN: | 2296-424X |
| DOI: | 10.3389/fphy.2021.662088 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fphy.2021.662088 Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/article/10.3389/fphy.2021.662088 |
| Verfasserangaben: | Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1794382607 | ||
| 003 | DE-627 | ||
| 005 | 20220820140929.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220302s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3389/fphy.2021.662088 |2 doi | |
| 035 | |a (DE-627)1794382607 | ||
| 035 | |a (DE-599)KXP1794382607 | ||
| 035 | |a (OCoLC)1341445588 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Rotkopf, Lukas Thomas |d 1992- |e VerfasserIn |0 (DE-588)1246822814 |0 (DE-627)1779915187 |4 aut | |
| 245 | 1 | 0 | |a Gaussian local phase approximation in a cylindrical tissue model |c Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener |
| 264 | 1 | |c 20 May 2021 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.03.2022 | ||
| 520 | |a In NMR or MRI, the measured signal is a function of the accumulated magnetization phase inside the measurement voxel, which itself depends on microstructural tissue parameters. Usually the phase distribution is assumed to be Gaussian and higher-order moments are neglected. Under this assumption, only the x-component of the total magnetization can be described correctly, and information about the local magnetization and the y-component of the total magnetization is lost. The Gaussian Local Phase (GLP) approximation overcomes these limitations by considering the distribution of the local phase in terms of a cumulant expansion. We derive the cumulants for a cylindrical muscle tissue model and show that an efficient numerical implementation of these terms is possible by writing their definitions as matrix differential equations. We demonstrate that the GLP approximation with two cumulants included has a better fit to the true magnetization than all the other options considered. It is able to capture both oscillatory and dampening behavior for different diffusion strengths. In addition, the introduced method can possibly be extended for models for which no explicit analytical solution for the magnetization behavior exists, such as spherical magnetic perturbers. | ||
| 700 | 1 | |a Wehrse, Eckhard |d 1988- |e VerfasserIn |0 (DE-588)1246823055 |0 (DE-627)1779915950 |4 aut | |
| 700 | 1 | |a Schlemmer, Heinz-Peter |d 1961- |e VerfasserIn |0 (DE-588)1025559967 |0 (DE-627)722927142 |0 (DE-576)17334805X |4 aut | |
| 700 | 1 | |a Ziener, Christian H. |d 1978- |e VerfasserIn |0 (DE-588)137982755 |0 (DE-627)59885309X |0 (DE-576)306117355 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Frontiers in physics |d Lausanne : Frontiers Media, 2013 |g 9(2021) vom: 20. Mai, Artikel-ID 662088, Seite 1-13 |h Online-Ressource |w (DE-627)750371749 |w (DE-600)2721033-9 |w (DE-576)384591213 |x 2296-424X |7 nnas |a Gaussian local phase approximation in a cylindrical tissue model |
| 773 | 1 | 8 | |g volume:9 |g year:2021 |g day:20 |g month:05 |g elocationid:662088 |g pages:1-13 |g extent:13 |a Gaussian local phase approximation in a cylindrical tissue model |
| 856 | 4 | 0 | |u https://doi.org/10.3389/fphy.2021.662088 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fphy.2021.662088 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220302 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 137982755 |a Ziener, Christian H. |m 137982755:Ziener, Christian H. |d 50000 |e 50000PZ137982755 |k 0/50000/ |p 4 |y j | ||
| 998 | |g 1025559967 |a Schlemmer, Heinz-Peter |m 1025559967:Schlemmer, Heinz-Peter |d 50000 |e 50000PS1025559967 |k 0/50000/ |p 3 | ||
| 998 | |g 1246823055 |a Wehrse, Eckhard |m 1246823055:Wehrse, Eckhard |d 50000 |e 50000PW1246823055 |k 0/50000/ |p 2 | ||
| 998 | |g 1246822814 |a Rotkopf, Lukas Thomas |m 1246822814:Rotkopf, Lukas Thomas |d 50000 |e 50000PR1246822814 |k 0/50000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1794382607 |e 4076811739 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"titleAlt":[{"title":"FPHY"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"750371749","disp":"Gaussian local phase approximation in a cylindrical tissue modelFrontiers in physics","part":{"extent":"13","year":"2021","text":"9(2021) vom: 20. Mai, Artikel-ID 662088, Seite 1-13","volume":"9","pages":"1-13"},"pubHistory":["2013 -"],"origin":[{"publisher":"Frontiers Media","publisherPlace":"Lausanne","dateIssuedKey":"2013","dateIssuedDisp":"2013-"}],"id":{"zdb":["2721033-9"],"eki":["750371749"],"issn":["2296-424X"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Frontiers in physics","title":"Frontiers in physics"}],"note":["Gesehen am 12. Dezember 2019"]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","display":"Rotkopf, Lukas Thomas","family":"Rotkopf","given":"Lukas Thomas"},{"role":"aut","display":"Wehrse, Eckhard","family":"Wehrse","given":"Eckhard"},{"given":"Heinz-Peter","family":"Schlemmer","display":"Schlemmer, Heinz-Peter","role":"aut"},{"role":"aut","family":"Ziener","display":"Ziener, Christian H.","given":"Christian H."}],"recId":"1794382607","id":{"doi":["10.3389/fphy.2021.662088"],"eki":["1794382607"]},"origin":[{"dateIssuedDisp":"20 May 2021","dateIssuedKey":"2021"}],"name":{"displayForm":["Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener"]},"note":["Gesehen am 02.03.2022"],"physDesc":[{"extent":"13 S."}],"language":["eng"],"title":[{"title":"Gaussian local phase approximation in a cylindrical tissue model","title_sort":"Gaussian local phase approximation in a cylindrical tissue model"}]} | ||
| SRT | |a ROTKOPFLUKGAUSSIANLO2020 | ||