Gaussian local phase approximation in a cylindrical tissue model

In NMR or MRI, the measured signal is a function of the accumulated magnetization phase inside the measurement voxel, which itself depends on microstructural tissue parameters. Usually the phase distribution is assumed to be Gaussian and higher-order moments are neglected. Under this assumption, onl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rotkopf, Lukas Thomas (VerfasserIn) , Wehrse, Eckhard (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Ziener, Christian H. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 May 2021
In: Frontiers in physics
Year: 2021, Jahrgang: 9, Pages: 1-13
ISSN:2296-424X
DOI:10.3389/fphy.2021.662088
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fphy.2021.662088
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/article/10.3389/fphy.2021.662088
Volltext
Verfasserangaben:Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener

MARC

LEADER 00000caa a2200000 c 4500
001 1794382607
003 DE-627
005 20220820140929.0
007 cr uuu---uuuuu
008 220302s2021 xx |||||o 00| ||eng c
024 7 |a 10.3389/fphy.2021.662088  |2 doi 
035 |a (DE-627)1794382607 
035 |a (DE-599)KXP1794382607 
035 |a (OCoLC)1341445588 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Rotkopf, Lukas Thomas  |d 1992-  |e VerfasserIn  |0 (DE-588)1246822814  |0 (DE-627)1779915187  |4 aut 
245 1 0 |a Gaussian local phase approximation in a cylindrical tissue model  |c Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener 
264 1 |c 20 May 2021 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.03.2022 
520 |a In NMR or MRI, the measured signal is a function of the accumulated magnetization phase inside the measurement voxel, which itself depends on microstructural tissue parameters. Usually the phase distribution is assumed to be Gaussian and higher-order moments are neglected. Under this assumption, only the x-component of the total magnetization can be described correctly, and information about the local magnetization and the y-component of the total magnetization is lost. The Gaussian Local Phase (GLP) approximation overcomes these limitations by considering the distribution of the local phase in terms of a cumulant expansion. We derive the cumulants for a cylindrical muscle tissue model and show that an efficient numerical implementation of these terms is possible by writing their definitions as matrix differential equations. We demonstrate that the GLP approximation with two cumulants included has a better fit to the true magnetization than all the other options considered. It is able to capture both oscillatory and dampening behavior for different diffusion strengths. In addition, the introduced method can possibly be extended for models for which no explicit analytical solution for the magnetization behavior exists, such as spherical magnetic perturbers. 
700 1 |a Wehrse, Eckhard  |d 1988-  |e VerfasserIn  |0 (DE-588)1246823055  |0 (DE-627)1779915950  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Ziener, Christian H.  |d 1978-  |e VerfasserIn  |0 (DE-588)137982755  |0 (DE-627)59885309X  |0 (DE-576)306117355  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in physics  |d Lausanne : Frontiers Media, 2013  |g 9(2021) vom: 20. Mai, Artikel-ID 662088, Seite 1-13  |h Online-Ressource  |w (DE-627)750371749  |w (DE-600)2721033-9  |w (DE-576)384591213  |x 2296-424X  |7 nnas  |a Gaussian local phase approximation in a cylindrical tissue model 
773 1 8 |g volume:9  |g year:2021  |g day:20  |g month:05  |g elocationid:662088  |g pages:1-13  |g extent:13  |a Gaussian local phase approximation in a cylindrical tissue model 
856 4 0 |u https://doi.org/10.3389/fphy.2021.662088  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/article/10.3389/fphy.2021.662088  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220302 
993 |a Article 
994 |a 2021 
998 |g 137982755  |a Ziener, Christian H.  |m 137982755:Ziener, Christian H.  |d 50000  |e 50000PZ137982755  |k 0/50000/  |p 4  |y j 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 3 
998 |g 1246823055  |a Wehrse, Eckhard  |m 1246823055:Wehrse, Eckhard  |d 50000  |e 50000PW1246823055  |k 0/50000/  |p 2 
998 |g 1246822814  |a Rotkopf, Lukas Thomas  |m 1246822814:Rotkopf, Lukas Thomas  |d 50000  |e 50000PR1246822814  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1794382607  |e 4076811739 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"titleAlt":[{"title":"FPHY"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"750371749","disp":"Gaussian local phase approximation in a cylindrical tissue modelFrontiers in physics","part":{"extent":"13","year":"2021","text":"9(2021) vom: 20. Mai, Artikel-ID 662088, Seite 1-13","volume":"9","pages":"1-13"},"pubHistory":["2013 -"],"origin":[{"publisher":"Frontiers Media","publisherPlace":"Lausanne","dateIssuedKey":"2013","dateIssuedDisp":"2013-"}],"id":{"zdb":["2721033-9"],"eki":["750371749"],"issn":["2296-424X"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Frontiers in physics","title":"Frontiers in physics"}],"note":["Gesehen am 12. Dezember 2019"]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","display":"Rotkopf, Lukas Thomas","family":"Rotkopf","given":"Lukas Thomas"},{"role":"aut","display":"Wehrse, Eckhard","family":"Wehrse","given":"Eckhard"},{"given":"Heinz-Peter","family":"Schlemmer","display":"Schlemmer, Heinz-Peter","role":"aut"},{"role":"aut","family":"Ziener","display":"Ziener, Christian H.","given":"Christian H."}],"recId":"1794382607","id":{"doi":["10.3389/fphy.2021.662088"],"eki":["1794382607"]},"origin":[{"dateIssuedDisp":"20 May 2021","dateIssuedKey":"2021"}],"name":{"displayForm":["Lukas T. Rotkopf, Eckhard Wehrse, Heinz-Peter Schlemmer and Christian H. Ziener"]},"note":["Gesehen am 02.03.2022"],"physDesc":[{"extent":"13 S."}],"language":["eng"],"title":[{"title":"Gaussian local phase approximation in a cylindrical tissue model","title_sort":"Gaussian local phase approximation in a cylindrical tissue model"}]} 
SRT |a ROTKOPFLUKGAUSSIANLO2020