Machine learning applications in psychotherapy research

Prediction of outcome or diagnoses from intake data or assessing the importance of variables as either risk factors or protective factors are fundamental tasks in psychotherapy research, in order to help clinicians and researchers to evaluate and improve treatments. With regard to data analytic asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schröder-Pfeifer, Paul (VerfasserIn)
Dokumenttyp: Buch/Monographie Hochschulschrift
Sprache:Englisch
Veröffentlicht: Heidelberg [2021?]
DOI:10.11588/heidok.00031214
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-312143
Resolving-System, kostenfrei: http://dx.doi.org/10.11588/heidok.00031214
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/31214
Resolving-System: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-312143
Langzeitarchivierung Nationalbibliothek: https://d-nb.info/1252465424/34
Volltext
Verfasserangaben:presented by Paul Schröder-Pfeifer ; advisor: Prof. Dr. phil. Svenja Taubner

MARC

LEADER 00000cam a2200000 c 4500
001 1794398317
003 DE-627
005 20250226092144.0
007 cr uuu---uuuuu
008 220302s2021 gw |||||om 00| ||eng c
024 7 |a urn:nbn:de:bsz:16-heidok-312143  |2 urn 
024 7 |a 10.11588/heidok.00031214  |2 doi 
035 |a (DE-627)1794398317 
035 |a (DE-599)KXP1794398317 
035 |a (OCoLC)1302115971 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 |a 610.7  |q DE-101 
082 0 4 |a 610  |q DE-101 
084 |a 11  |2 sdnb 
084 |a 33  |2 sdnb 
100 1 |a Schröder-Pfeifer, Paul  |d 1989-  |e VerfasserIn  |0 (DE-588)1185506306  |0 (DE-627)1664849661  |4 aut 
245 1 0 |a Machine learning applications in psychotherapy research  |c presented by Paul Schröder-Pfeifer ; advisor: Prof. Dr. phil. Svenja Taubner 
264 1 |a Heidelberg  |c [2021?] 
264 4 |c 23 Feb 2022 
300 |a 1 Online-Ressource (222 Seiten)  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Publikationsbasierte Dissertation 
502 |b Dissertation  |c Heidelberg University  |d 2021 
520 |a Prediction of outcome or diagnoses from intake data or assessing the importance of variables as either risk factors or protective factors are fundamental tasks in psychotherapy research, in order to help clinicians and researchers to evaluate and improve treatments. With regard to data analytic assessment, these tasks can be handled by a range of parametric approaches such as regression models. However, there are cases where parametric approaches are either not applicable or have severe limitations (e.g. Strobl et al., 2009). Also, there is increasing support to the notion that biopsychosocial contributions to psychopathology are complex and cannot be sufficiently explained by a small number of variables restricted to linear relationships (Franklin, 2019; Kendler, 2019). Machine Learning (ML) algorithms offer an additional suite of methods able to deal with such complexity and can be used to extend the toolbox of psychotherapy researchers. The aim of the dissertation is to provide an understanding of machine learning application for psychotherapy research and to foster the motivation to use and improve these methods in future research. 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Taubner, Svenja  |d 1973-  |e AkademischeR BetreuerIn  |0 (DE-588)115658955  |0 (DE-627)588317365  |0 (DE-576)301323666  |4 dgs 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Schröder-Pfeifer, Paul, 1989 -   |t Machine learning applications in psychotherapy research  |d Heidelberg, 2020  |h 222 Seiten  |w (DE-627)1796179728 
856 4 0 |u https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-312143  |q application/pdf  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://dx.doi.org/10.11588/heidok.00031214  |v 2022-03-10  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://www.ub.uni-heidelberg.de/archiv/31214  |q application/pdf  |v 2022-03-10  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-312143  |v 2022-03-10  |x Resolving-System 
856 4 0 |u https://d-nb.info/1252465424/34  |v 2022-03-10  |x Langzeitarchivierung Nationalbibliothek 
912 |a GBV-ODiss 
951 |a BO 
992 |a 20220302 
993 |a Thesis 
994 |a 2021 
998 |g 1185506306  |a Schröder-Pfeifer, Paul  |m 1185506306:Schröder-Pfeifer, Paul  |d 100000  |d 100001  |e 100000PS1185506306  |e 100001PS1185506306  |k 0/100000/  |k 1/100000/100001/  |p 1  |x j  |y j 
999 |a KXP-PPN1794398317  |e 4076849353 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"1 Online-Ressource (222 Seiten)","noteIll":"Illustrationen, Diagramme"}],"id":{"doi":["10.11588/heidok.00031214"],"uri":["urn:nbn:de:bsz:16-heidok-312143"],"eki":["1794398317"]},"note":["Publikationsbasierte Dissertation"],"noteThesis":["Dissertation. - Heidelberg University. - 2021"],"type":{"bibl":"thesis","media":"Online-Ressource"},"origin":[{"publisherPlace":"Heidelberg","dateIssuedDisp":"[2021?]","dateIssuedKey":"2021"}],"recId":"1794398317","person":[{"family":"Schröder-Pfeifer","role":"aut","given":"Paul","display":"Schröder-Pfeifer, Paul"},{"family":"Taubner","display":"Taubner, Svenja","given":"Svenja","role":"dgs"}],"title":[{"title":"Machine learning applications in psychotherapy research","title_sort":"Machine learning applications in psychotherapy research"}],"name":{"displayForm":["presented by Paul Schröder-Pfeifer ; advisor: Prof. Dr. phil. Svenja Taubner"]},"language":["eng"]} 
SRT |a SCHROEDERPMACHINELEA2021