Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach: a bosonization approach

The recent generalization of the Lowenstein-Swieca operator solution of quantum electrodynamics in (1+1) dimensions to a finite temperature in thermofield dynamics is further generalized to include a non-vanishing chemical potential. The operator solution to the Euler-Lagrange equations respecting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amaral, R. L. P. G. (VerfasserIn) , Belvedere, Luiz Victorio (VerfasserIn) , Rothe, Klaus D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 March 2011
In: Journal of physics. A, Mathematical and theoretical
Year: 2011, Jahrgang: 44, Heft: 14, Pages: 1-15
ISSN:1751-8121
DOI:10.1088/1751-8113/44/14/145402
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1751-8113/44/14/145402
Volltext
Verfasserangaben:R.L.P.G. Amaral, L.V. Belvedere and K.D. Rothe
Beschreibung
Zusammenfassung:The recent generalization of the Lowenstein-Swieca operator solution of quantum electrodynamics in (1+1) dimensions to a finite temperature in thermofield dynamics is further generalized to include a non-vanishing chemical potential. The operator solution to the Euler-Lagrange equations respecting the Kubo-Martin-Schwinger condition is constructed. Two forms of this condition and their associated solutions are discussed. The correlation functions of an arbitrary number of chiral densities are computed in the thermal θ-vacuum.
Beschreibung:Gesehen am 02.03.2022
Beschreibung:Online Resource
ISSN:1751-8121
DOI:10.1088/1751-8113/44/14/145402