Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach: a bosonization approach
The recent generalization of the Lowenstein-Swieca operator solution of quantum electrodynamics in (1+1) dimensions to a finite temperature in thermofield dynamics is further generalized to include a non-vanishing chemical potential. The operator solution to the Euler-Lagrange equations respecting t...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
10 March 2011
|
| In: |
Journal of physics. A, Mathematical and theoretical
Year: 2011, Jahrgang: 44, Heft: 14, Pages: 1-15 |
| ISSN: | 1751-8121 |
| DOI: | 10.1088/1751-8113/44/14/145402 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1751-8113/44/14/145402 |
| Verfasserangaben: | R.L.P.G. Amaral, L.V. Belvedere and K.D. Rothe |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1794400079 | ||
| 003 | DE-627 | ||
| 005 | 20220820141041.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220302s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1088/1751-8113/44/14/145402 |2 doi | |
| 035 | |a (DE-627)1794400079 | ||
| 035 | |a (DE-599)KXP1794400079 | ||
| 035 | |a (OCoLC)1341445533 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Amaral, R. L. P. G. |e VerfasserIn |0 (DE-588)1252763573 |0 (DE-627)1794399097 |4 aut | |
| 245 | 1 | 0 | |a Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach |b a bosonization approach |c R.L.P.G. Amaral, L.V. Belvedere and K.D. Rothe |
| 264 | 1 | |c 10 March 2011 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.03.2022 | ||
| 520 | |a The recent generalization of the Lowenstein-Swieca operator solution of quantum electrodynamics in (1+1) dimensions to a finite temperature in thermofield dynamics is further generalized to include a non-vanishing chemical potential. The operator solution to the Euler-Lagrange equations respecting the Kubo-Martin-Schwinger condition is constructed. Two forms of this condition and their associated solutions are discussed. The correlation functions of an arbitrary number of chiral densities are computed in the thermal θ-vacuum. | ||
| 700 | 1 | |a Belvedere, Luiz Victorio |e VerfasserIn |0 (DE-588)1244309222 |0 (DE-627)1775554791 |4 aut | |
| 700 | 1 | |a Rothe, Klaus D. |d 1939- |e VerfasserIn |0 (DE-588)171269837 |0 (DE-627)061453412 |0 (DE-576)132075962 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of physics. A, Mathematical and theoretical |d Bristol : IOP Publ., 2007 |g 44(2011), 14, Artikel-ID 145402, Seite 1-15 |h Online-Ressource |w (DE-627)225409631 |w (DE-600)1363010-6 |w (DE-576)077608011 |x 1751-8121 |7 nnas |a Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach a bosonization approach |
| 773 | 1 | 8 | |g volume:44 |g year:2011 |g number:14 |g elocationid:145402 |g pages:1-15 |g extent:15 |a Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach a bosonization approach |
| 856 | 4 | 0 | |u https://doi.org/10.1088/1751-8113/44/14/145402 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220302 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 171269837 |a Rothe, Klaus D. |m 171269837:Rothe, Klaus D. |d 130000 |d 130300 |e 130000PR171269837 |e 130300PR171269837 |k 0/130000/ |k 1/130000/130300/ |p 3 |y j | ||
| 999 | |a KXP-PPN1794400079 |e 4076853083 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"15 S."}],"relHost":[{"part":{"text":"44(2011), 14, Artikel-ID 145402, Seite 1-15","volume":"44","extent":"15","year":"2011","issue":"14","pages":"1-15"},"titleAlt":[{"title":"Journal of physics / A"}],"pubHistory":["40.2007 -"],"language":["eng"],"recId":"225409631","disp":"Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach a bosonization approachJournal of physics. A, Mathematical and theoretical","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.06.2022"],"title":[{"partname":"Mathematical and theoretical","title":"Journal of physics","subtitle":"concerned with the fundamental mathematical and computational methods underpinning physics, the journal is particularly relevant to statistical physics, chaotic and complex systems, classical and quantum mechanics and classical and quantum field theory","title_sort":"Journal of physics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1751-8121"],"zdb":["1363010-6"],"eki":["225409631"],"doi":["10.1088/issn.1751-8121"]},"origin":[{"publisher":"IOP Publ.","dateIssuedKey":"2007","dateIssuedDisp":"2007-","publisherPlace":"Bristol"}]}],"name":{"displayForm":["R.L.P.G. Amaral, L.V. Belvedere and K.D. Rothe"]},"origin":[{"dateIssuedDisp":"10 March 2011","dateIssuedKey":"2011"}],"id":{"doi":["10.1088/1751-8113/44/14/145402"],"eki":["1794400079"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 02.03.2022"],"recId":"1794400079","language":["eng"],"person":[{"given":"R. L. P. G.","family":"Amaral","role":"aut","display":"Amaral, R. L. P. G.","roleDisplay":"VerfasserIn"},{"display":"Belvedere, Luiz Victorio","roleDisplay":"VerfasserIn","role":"aut","family":"Belvedere","given":"Luiz Victorio"},{"given":"Klaus D.","family":"Rothe","role":"aut","display":"Rothe, Klaus D.","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach","subtitle":"a bosonization approach","title":"Thermofield quantum electrodynamics in (1 + 1) dimensions at a finite chemical potential: a bosonization approach"}]} | ||
| SRT | |a AMARALRLPGTHERMOFIEL1020 | ||