RIP - the regulatory interaction predictor: a machine learning-based approach for predicting target genes of transcription factors

Motivation: Understanding transcriptional gene regulation is essential for studying cellular systems. Identifying genome-wide targets of transcription factors (TFs) provides the basis to discover the involvement of TFs and TF cooperativeness in cellular systems and pathogenesis.Results: We present t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bauer, Tobias Hartmut (VerfasserIn) , Eils, Roland (VerfasserIn) , König, Rainer (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 June 2011
In: Bioinformatics
Year: 2011, Jahrgang: 27, Heft: 16, Pages: 2239-2247
ISSN:1367-4811
DOI:10.1093/bioinformatics/btr366
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/bioinformatics/btr366
Volltext
Verfasserangaben:Tobias Bauer, Roland Eils and Rainer König

MARC

LEADER 00000caa a2200000 c 4500
001 1794404104
003 DE-627
005 20230426180516.0
007 cr uuu---uuuuu
008 220302s2011 xx |||||o 00| ||eng c
024 7 |a 10.1093/bioinformatics/btr366  |2 doi 
035 |a (DE-627)1794404104 
035 |a (DE-599)KXP1794404104 
035 |a (OCoLC)1341445463 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Bauer, Tobias Hartmut  |e VerfasserIn  |0 (DE-588)1022465880  |0 (DE-627)716988089  |0 (DE-576)365389870  |4 aut 
245 1 0 |a RIP - the regulatory interaction predictor  |b a machine learning-based approach for predicting target genes of transcription factors  |c Tobias Bauer, Roland Eils and Rainer König 
264 1 |c 20 June 2011 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.03.2022 
520 |a Motivation: Understanding transcriptional gene regulation is essential for studying cellular systems. Identifying genome-wide targets of transcription factors (TFs) provides the basis to discover the involvement of TFs and TF cooperativeness in cellular systems and pathogenesis.Results: We present the regulatory interaction predictor (RIP), a machine learning approach that inferred 73 923 regulatory interactions (RIs) for 301 human TFs and 11 263 target genes with considerably good quality and 4516 RIs with very high quality. The inference of RIs is independent of any specific condition. Our approach employs support vector machines (SVMs) trained on a set of experimentally proven RIs from a public repository (TRANSFAC). Features of RIs for the learning process are based on a correlation meta-analysis of 4064 gene expression profiles from 76 studies, in silico predictions of transcription factor binding sites (TFBSs) and combinations of these employing knowledge about co-regulation of genes by a common TF (TF-module). The trained SVMs were applied to infer new RIs for a large set of TFs and genes. In a case study, we employed the inferred RIs to analyze an independent microarray dataset. We identified key TFs regulating the transcriptional response upon interferon alpha stimulation of monocytes, most prominently interferon-stimulated gene factor 3 (ISGF3). Furthermore, predicted TF-modules were highly associated to their functionally related pathways.Conclusion: Descriptors of gene expression, TFBS predictions, experimentally verified binding information and statistical combination of this enabled inferring RIs on a genome-wide scale for human genes with considerably good precision serving as a good basis for expression profiling studies.Contact:r.koenigdkfz.deSupplementary information:Supplementary data are available at Bioinformatics online. 
700 1 |a Eils, Roland  |d 1965-  |e VerfasserIn  |0 (DE-588)1020648287  |0 (DE-627)691291705  |0 (DE-576)361718195  |4 aut 
700 1 |a König, Rainer  |d 1968-  |e VerfasserIn  |0 (DE-588)121507076  |0 (DE-627)705500535  |0 (DE-576)292745451  |4 aut 
773 0 8 |i Enthalten in  |t Bioinformatics  |d Oxford : Oxford Univ. Press, 1998  |g 27(2011), 16, Seite 2239-2247  |h Online-Ressource  |w (DE-627)266884857  |w (DE-600)1468345-3  |w (DE-576)079420133  |x 1367-4811  |7 nnas  |a RIP - the regulatory interaction predictor a machine learning-based approach for predicting target genes of transcription factors 
773 1 8 |g volume:27  |g year:2011  |g number:16  |g pages:2239-2247  |g extent:9  |a RIP - the regulatory interaction predictor a machine learning-based approach for predicting target genes of transcription factors 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btr366  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220302 
993 |a Article 
994 |a 2011 
998 |g 121507076  |a König, Rainer  |m 121507076:König, Rainer  |d 160000  |d 160100  |e 160000PK121507076  |e 160100PK121507076  |k 0/160000/  |k 1/160000/160100/  |p 3  |y j 
998 |g 1020648287  |a Eils, Roland  |m 1020648287:Eils, Roland  |d 160000  |d 160100  |e 160000PE1020648287  |e 160100PE1020648287  |k 0/160000/  |k 1/160000/160100/  |p 2 
998 |g 1022465880  |a Bauer, Tobias Hartmut  |m 1022465880:Bauer, Tobias Hartmut  |d 140000  |e 140000PB1022465880  |k 0/140000/  |p 1  |x j 
999 |a KXP-PPN1794404104  |e 4076859073 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 02.03.2022"],"relHost":[{"title":[{"title_sort":"Bioinformatics","title":"Bioinformatics"}],"pubHistory":["14.1998 -"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"titleAlt":[{"title":"Bioinformatics online"}],"note":["Gesehen am 26.07.2023","Fortsetzung der Druck-Ausgabe"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"volume":"27","pages":"2239-2247","text":"27(2011), 16, Seite 2239-2247","extent":"9","issue":"16","year":"2011"},"origin":[{"publisher":"Oxford Univ. Press","dateIssuedKey":"1998","dateIssuedDisp":"1998-","publisherPlace":"Oxford"}],"id":{"eki":["266884857"],"issn":["1367-4811"],"zdb":["1468345-3"]},"disp":"RIP - the regulatory interaction predictor a machine learning-based approach for predicting target genes of transcription factorsBioinformatics","recId":"266884857"}],"person":[{"display":"Bauer, Tobias Hartmut","family":"Bauer","role":"aut","given":"Tobias Hartmut"},{"given":"Roland","role":"aut","family":"Eils","display":"Eils, Roland"},{"display":"König, Rainer","given":"Rainer","role":"aut","family":"König"}],"title":[{"title":"RIP - the regulatory interaction predictor","subtitle":"a machine learning-based approach for predicting target genes of transcription factors","title_sort":"RIP - the regulatory interaction predictor"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"9 S."}],"language":["eng"],"id":{"eki":["1794404104"],"doi":["10.1093/bioinformatics/btr366"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"20 June 2011"}],"name":{"displayForm":["Tobias Bauer, Roland Eils and Rainer König"]},"recId":"1794404104"} 
SRT |a BAUERTOBIARIPTHEREGU2020