Deep learning for the classification of non-hodgkin lymphoma on histopathological images

The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and require expert knowledge, great experience, thorough morphological analysis, and often additional expensive immunohistological and molecular methods. As these requirements are not always available, supplemental methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Steinbuß, Georg (VerfasserIn) , Kriegsmann, Mark (VerfasserIn) , Zgorzelski, Christiane (VerfasserIn) , Brobeil, Alexander (VerfasserIn) , Goeppert, Benjamin (VerfasserIn) , Dietrich, Sascha (VerfasserIn) , Mechtersheimer, Gunhild (VerfasserIn) , Kriegsmann, Katharina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 May 2021
In: Cancers
Year: 2021, Jahrgang: 13, Heft: 10, Pages: 1-11
ISSN:2072-6694
DOI:10.3390/cancers13102419
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers13102419
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/13/10/2419
Volltext
Verfasserangaben:Georg Steinbuss, Mark Kriegsmann, Christiane Zgorzelski, Alexander Brobeil, Benjamin Goeppert, Sascha Dietrich, Gunhild Mechtersheimer and Katharina Kriegsmann

MARC

LEADER 00000caa a2200000 c 4500
001 179468090X
003 DE-627
005 20220820142053.0
007 cr uuu---uuuuu
008 220304s2021 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers13102419  |2 doi 
035 |a (DE-627)179468090X 
035 |a (DE-599)KXP179468090X 
035 |a (OCoLC)1341445695 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Steinbuß, Georg  |e VerfasserIn  |0 (DE-588)1213253330  |0 (DE-627)1703730534  |4 aut 
245 1 0 |a Deep learning for the classification of non-hodgkin lymphoma on histopathological images  |c Georg Steinbuss, Mark Kriegsmann, Christiane Zgorzelski, Alexander Brobeil, Benjamin Goeppert, Sascha Dietrich, Gunhild Mechtersheimer and Katharina Kriegsmann 
264 1 |c 17 May 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.03.2022 
520 |a The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and require expert knowledge, great experience, thorough morphological analysis, and often additional expensive immunohistological and molecular methods. As these requirements are not always available, supplemental methods supporting morphological-based decision making and potentially entity subtyping are required. Deep learning methods have been shown to classify histopathological images with high accuracy, but data on NHL subtyping are limited. After annotation of histopathological whole-slide images and image patch extraction, we trained and optimized an EfficientNet convolutional neuronal network algorithm on 84,139 image patches from 629 patients and evaluated its potential to classify tumor-free reference lymph nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal diffuse large B-cell lymphoma. The optimized algorithm achieved an accuracy of 95.56% on an independent test set including 16,960 image patches from 125 patients after the application of quality controls. Automatic classification of NHL is possible with high accuracy using deep learning on histopathological images and routine diagnostic applications should be pursued. 
650 4 |a artificial intelligence 
650 4 |a CLL/SLL 
650 4 |a CNN 
650 4 |a deep learning 
650 4 |a DLBCL 
650 4 |a histopathology 
700 1 |a Kriegsmann, Mark  |d 1987-  |e VerfasserIn  |0 (DE-588)103740324X  |0 (DE-627)755668782  |0 (DE-576)39141870X  |4 aut 
700 1 |a Zgorzelski, Christiane  |e VerfasserIn  |0 (DE-588)1167972317  |0 (DE-627)1031669019  |0 (DE-576)511377622  |4 aut 
700 1 |a Brobeil, Alexander  |e VerfasserIn  |0 (DE-588)108137795X  |0 (DE-627)846032406  |0 (DE-576)454349661  |4 aut 
700 1 |a Goeppert, Benjamin  |d 1977-  |e VerfasserIn  |0 (DE-588)1022581635  |0 (DE-627)717004244  |0 (DE-576)365641324  |4 aut 
700 1 |a Dietrich, Sascha  |d 1979-  |e VerfasserIn  |0 (DE-588)136406300  |0 (DE-627)694354635  |0 (DE-576)301003408  |4 aut 
700 1 |a Mechtersheimer, Gunhild  |e VerfasserIn  |0 (DE-588)1021953024  |0 (DE-627)715842595  |0 (DE-576)170441598  |4 aut 
700 1 |a Kriegsmann, Katharina  |d 1986-  |e VerfasserIn  |0 (DE-588)1049422449  |0 (DE-627)781924006  |0 (DE-576)40339774X  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 13(2021), 10, Artikel-ID 2419, Seite 1-11  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a Deep learning for the classification of non-hodgkin lymphoma on histopathological images 
773 1 8 |g volume:13  |g year:2021  |g number:10  |g elocationid:2419  |g pages:1-11  |g extent:11  |a Deep learning for the classification of non-hodgkin lymphoma on histopathological images 
856 4 0 |u https://doi.org/10.3390/cancers13102419  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/13/10/2419  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220304 
993 |a Article 
994 |a 2021 
998 |g 1049422449  |a Kriegsmann, Katharina  |m 1049422449:Kriegsmann, Katharina  |d 910000  |d 910100  |e 910000PK1049422449  |e 910100PK1049422449  |k 0/910000/  |k 1/910000/910100/  |p 8  |y j 
998 |g 1021953024  |a Mechtersheimer, Gunhild  |m 1021953024:Mechtersheimer, Gunhild  |d 910000  |d 912000  |d 50000  |e 910000PM1021953024  |e 912000PM1021953024  |e 50000PM1021953024  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 7 
998 |g 136406300  |a Dietrich, Sascha  |m 136406300:Dietrich, Sascha  |d 910000  |d 910100  |d 50000  |e 910000PD136406300  |e 910100PD136406300  |e 50000PD136406300  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 6 
998 |g 1022581635  |a Goeppert, Benjamin  |m 1022581635:Goeppert, Benjamin  |d 910000  |d 912000  |d 50000  |e 910000PG1022581635  |e 912000PG1022581635  |e 50000PG1022581635  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 5 
998 |g 108137795X  |a Brobeil, Alexander  |m 108137795X:Brobeil, Alexander  |d 910000  |d 912000  |e 910000PB108137795X  |e 912000PB108137795X  |k 0/910000/  |k 1/910000/912000/  |p 4 
998 |g 1167972317  |a Zgorzelski, Christiane  |m 1167972317:Zgorzelski, Christiane  |p 3 
998 |g 103740324X  |a Kriegsmann, Mark  |m 103740324X:Kriegsmann, Mark  |d 910000  |d 912000  |d 50000  |e 910000PK103740324X  |e 912000PK103740324X  |e 50000PK103740324X  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 2 
998 |g 1213253330  |a Steinbuß, Georg  |m 1213253330:Steinbuß, Georg  |d 910000  |d 910100  |e 910000PS1213253330  |e 910100PS1213253330  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN179468090X  |e 4078493793 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"disp":"Deep learning for the classification of non-hodgkin lymphoma on histopathological imagesCancers","part":{"issue":"10","volume":"13","extent":"11","pages":"1-11","text":"13(2021), 10, Artikel-ID 2419, Seite 1-11","year":"2021"},"origin":[{"publisher":"MDPI","dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisherPlace":"Basel"}],"note":["Gesehen am 27.05.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Cancers","title_sort":"Cancers"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"614095670","pubHistory":["1.2009 -"],"id":{"issn":["2072-6694"],"eki":["614095670"],"zdb":["2527080-1"]}}],"id":{"eki":["179468090X"],"doi":["10.3390/cancers13102419"]},"recId":"179468090X","name":{"displayForm":["Georg Steinbuss, Mark Kriegsmann, Christiane Zgorzelski, Alexander Brobeil, Benjamin Goeppert, Sascha Dietrich, Gunhild Mechtersheimer and Katharina Kriegsmann"]},"physDesc":[{"extent":"11 S."}],"language":["eng"],"note":["Gesehen am 04.03.2022"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"17 May 2021"}],"title":[{"title_sort":"Deep learning for the classification of non-hodgkin lymphoma on histopathological images","title":"Deep learning for the classification of non-hodgkin lymphoma on histopathological images"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"family":"Steinbuß","display":"Steinbuß, Georg","role":"aut","given":"Georg"},{"role":"aut","given":"Mark","display":"Kriegsmann, Mark","family":"Kriegsmann"},{"given":"Christiane","role":"aut","family":"Zgorzelski","display":"Zgorzelski, Christiane"},{"display":"Brobeil, Alexander","family":"Brobeil","role":"aut","given":"Alexander"},{"given":"Benjamin","role":"aut","family":"Goeppert","display":"Goeppert, Benjamin"},{"family":"Dietrich","display":"Dietrich, Sascha","role":"aut","given":"Sascha"},{"display":"Mechtersheimer, Gunhild","family":"Mechtersheimer","role":"aut","given":"Gunhild"},{"role":"aut","given":"Katharina","display":"Kriegsmann, Katharina","family":"Kriegsmann"}]} 
SRT |a STEINBUSSGDEEPLEARNI1720