OutbreakFlow: model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany

Mathematical models in epidemiology are an indispensable tool to determine the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and interventional measures during an ongoing outbreak. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Radev, Stefan (VerfasserIn) , Graw, Frederik (VerfasserIn) , Chen, Simiao (VerfasserIn) , Mutters, Nico T. (VerfasserIn) , Eichel, Vanessa (VerfasserIn) , Bärnighausen, Till (VerfasserIn) , Köthe, Ullrich (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: October 25, 2021
In: PLoS Computational Biology
Year: 2021, Jahrgang: 17, Heft: 10, Pages: 1-26
ISSN:1553-7358
DOI:10.1371/journal.pcbi.1009472
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1371/journal.pcbi.1009472
Verlag, kostenfrei, Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009472
Volltext
Verfasserangaben:Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe

MARC

LEADER 00000caa a2200000 c 4500
001 1795100427
003 DE-627
005 20230428183742.0
007 cr uuu---uuuuu
008 220309s2021 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pcbi.1009472  |2 doi 
035 |a (DE-627)1795100427 
035 |a (DE-599)KXP1795100427 
035 |a (OCoLC)1341445610 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Radev, Stefan  |d 1993-  |e VerfasserIn  |0 (DE-588)1155312392  |0 (DE-627)1016724993  |0 (DE-576)501536248  |4 aut 
245 1 0 |a OutbreakFlow  |b model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany  |c Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe 
264 1 |c October 25, 2021 
300 |a 26 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.03.2022 
520 |a Mathematical models in epidemiology are an indispensable tool to determine the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and interventional measures during an ongoing outbreak. However, reliably inferring the epidemical dynamics by connecting complex models to real data is still hard and requires either laborious manual parameter fitting or expensive optimization methods which have to be repeated from scratch for every application of a given model. In this work, we address this problem with a novel combination of epidemiological modeling with specialized neural networks. Our approach entails two computational phases: In an initial training phase, a mathematical model describing the epidemic is used as a coach for a neural network, which acquires global knowledge about the full range of possible disease dynamics. In the subsequent inference phase, the trained neural network processes the observed data of an actual outbreak and infers the parameters of the model in order to realistically reproduce the observed dynamics and reliably predict future progression. With its flexible framework, our simulation-based approach is applicable to a variety of epidemiological models. Moreover, since our method is fully Bayesian, it is designed to incorporate all available prior knowledge about plausible parameter values and returns complete joint posterior distributions over these parameters. Application of our method to the early Covid-19 outbreak phase in Germany demonstrates that we are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations. 
650 4 |a COVID 19 
650 4 |a Disease dynamics 
650 4 |a Epidemiology 
650 4 |a Germany 
650 4 |a Machine learning 
650 4 |a Network analysis 
650 4 |a Neural networks 
650 4 |a Pandemics 
700 1 |a Graw, Frederik  |e VerfasserIn  |0 (DE-588)1133583717  |0 (DE-627)889501750  |0 (DE-576)488591945  |4 aut 
700 1 |a Chen, Simiao  |e VerfasserIn  |0 (DE-588)1138719242  |0 (DE-627)896263061  |0 (DE-576)492659265  |4 aut 
700 1 |a Mutters, Nico T.  |d 1980-  |e VerfasserIn  |0 (DE-588)136849687  |0 (DE-627)694710199  |0 (DE-576)288598962  |4 aut 
700 1 |a Eichel, Vanessa  |e VerfasserIn  |0 (DE-588)1201123135  |0 (DE-627)1684403227  |4 aut 
700 1 |a Bärnighausen, Till  |d 1969-  |e VerfasserIn  |0 (DE-588)120262029  |0 (DE-627)080560512  |0 (DE-576)178470848  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
773 0 8 |i Enthalten in  |a Public Library of Science  |t PLoS Computational Biology  |d San Francisco, Calif. : Public Library of Science, 2005  |g 17(2021), 10, Artikel-ID e1009472, Seite 1-26  |h Online-Ressource  |w (DE-627)491436017  |w (DE-600)2193340-6  |w (DE-576)273890492  |x 1553-7358  |7 nnas 
773 1 8 |g volume:17  |g year:2021  |g number:10  |g elocationid:e1009472  |g pages:1-26  |g extent:26  |a OutbreakFlow model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany 
856 4 0 |u https://doi.org/10.1371/journal.pcbi.1009472  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009472  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220309 
993 |a Article 
994 |a 2021 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 7  |y j 
998 |g 120262029  |a Bärnighausen, Till  |m 120262029:Bärnighausen, Till  |d 910000  |d 912800  |e 910000PB120262029  |e 912800PB120262029  |k 0/910000/  |k 1/910000/912800/  |p 6 
998 |g 1201123135  |a Eichel, Vanessa  |m 1201123135:Eichel, Vanessa  |d 910000  |d 911700  |e 910000PE1201123135  |e 911700PE1201123135  |k 0/910000/  |k 1/910000/911700/  |p 5 
998 |g 136849687  |a Mutters, Nico T.  |m 136849687:Mutters, Nico T.  |d 50000  |e 50000PM136849687  |k 0/50000/  |p 4 
998 |g 1138719242  |a Chen, Simiao  |m 1138719242:Chen, Simiao  |d 910000  |d 912800  |e 910000PC1138719242  |e 912800PC1138719242  |k 0/910000/  |k 1/910000/912800/  |p 3 
998 |g 1133583717  |a Graw, Frederik  |m 1133583717:Graw, Frederik  |d 700000  |d 716000  |e 700000PG1133583717  |e 716000PG1133583717  |k 0/700000/  |k 1/700000/716000/  |p 2 
998 |g 1155312392  |a Radev, Stefan  |m 1155312392:Radev, Stefan  |d 100000  |d 100200  |e 100000PR1155312392  |e 100200PR1155312392  |k 0/100000/  |k 1/100000/100200/  |p 1  |x j 
999 |a KXP-PPN1795100427  |e 4084471895 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","given":"Stefan","display":"Radev, Stefan","family":"Radev"},{"given":"Frederik","role":"aut","family":"Graw","display":"Graw, Frederik"},{"given":"Simiao","role":"aut","display":"Chen, Simiao","family":"Chen"},{"display":"Mutters, Nico T.","family":"Mutters","given":"Nico T.","role":"aut"},{"role":"aut","given":"Vanessa","family":"Eichel","display":"Eichel, Vanessa"},{"role":"aut","given":"Till","family":"Bärnighausen","display":"Bärnighausen, Till"},{"family":"Köthe","display":"Köthe, Ullrich","given":"Ullrich","role":"aut"}],"language":["eng"],"title":[{"subtitle":"model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany","title_sort":"OutbreakFlow","title":"OutbreakFlow"}],"note":["Gesehen am 09.03.2022"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"October 25, 2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"26 S."}],"name":{"displayForm":["Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe"]},"relHost":[{"language":["eng"],"part":{"text":"17(2021), 10, Artikel-ID e1009472, Seite 1-26","issue":"10","pages":"1-26","year":"2021","extent":"26","volume":"17"},"corporate":[{"role":"aut","display":"Public Library of Science"}],"recId":"491436017","name":{"displayForm":["publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)"]},"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["491436017"],"zdb":["2193340-6"],"issn":["1553-7358"]},"origin":[{"dateIssuedDisp":"2005-","publisher":"Public Library of Science","dateIssuedKey":"2005","publisherPlace":"San Francisco, Calif."}],"pubHistory":["1.2005 -"],"note":["Gesehen am 23. November 2020"],"title":[{"title":"PLoS Computational Biology","subtitle":"a new community journal","title_sort":"PLoS Computational Biology"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Public Library of SciencePLoS Computational Biology"}],"recId":"1795100427","id":{"doi":["10.1371/journal.pcbi.1009472"],"eki":["1795100427"]}} 
SRT |a RADEVSTEFAOUTBREAKFL2520