PT-symmetric representations of fermionic algebras

A recent paper by Jones-Smith and Mathur, Phys. Rev. A 82, 042101 (2010) extends PT-symmetric quantum mechanics from bosonic systems (systems for which T2=1) to fermionic systems (systems for which T2=−1). The current paper shows how the formalism developed by Jones-Smith and Mathur can be used to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bender, Carl M. (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 August 2011
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2011, Jahrgang: 84, Heft: 2, Pages: 1-5
ISSN:1094-1622
DOI:10.1103/PhysRevA.84.024102
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.84.024102
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.84.024102
Volltext
Verfasserangaben:Carl M. Bender and S.P. Klevansky
Beschreibung
Zusammenfassung:A recent paper by Jones-Smith and Mathur, Phys. Rev. A 82, 042101 (2010) extends PT-symmetric quantum mechanics from bosonic systems (systems for which T2=1) to fermionic systems (systems for which T2=−1). The current paper shows how the formalism developed by Jones-Smith and Mathur can be used to construct PT-symmetric matrix representations for operator algebras of the form η2=0, ¯η2=0, η¯η+¯ηη=α1, where ¯η=ηPT=PTηT−1P−1. It is easy to construct matrix representations for the Grassmann algebra (α=0). However, one can only construct matrix representations for the fermionic operator algebra (α≠0) if α=−1; a matrix representation does not exist for the conventional value α=1.
Beschreibung:Gesehen am 16.03.2022
Beschreibung:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.84.024102