Expert-enhanced machine learning for cardiac arrhythmia classification

We propose a new method for the classification task of distinguishing atrial fibrillation (AFib) from regular atrial tachycardias including atrial flutter (AFlu) based on a surface electrocardiogram (ECG). Recently, many approaches for an automatic classification of cardiac arrhythmia were proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sager, Sebastian (VerfasserIn) , Bernhardt, Felix (VerfasserIn) , Kehrle, Florian (VerfasserIn) , Merkert, Maximilian (VerfasserIn) , Potschka, Andreas (VerfasserIn) , Meder, Benjamin (VerfasserIn) , Katus, Hugo (VerfasserIn) , Scholz, Eberhard P. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 23, 2021
In: PLOS ONE
Year: 2021, Jahrgang: 16, Heft: 12, Pages: 1-22
ISSN:1932-6203
DOI:10.1371/journal.pone.0261571
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0261571
Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261571
Volltext
Verfasserangaben:Sebastian Sager, Felix Bernhardt, Florian Kehrle, Maximilian Merkert, Andreas Potschka, Benjamin Meder, Hugo Katus, Eberhard Scholz

MARC

LEADER 00000caa a2200000 c 4500
001 1796151556
003 DE-627
005 20220820150753.0
007 cr uuu---uuuuu
008 220321s2021 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0261571  |2 doi 
035 |a (DE-627)1796151556 
035 |a (DE-599)KXP1796151556 
035 |a (OCoLC)1341453594 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Sager, Sebastian  |d 1975-  |e VerfasserIn  |0 (DE-588)134228650  |0 (DE-627)563402520  |0 (DE-576)300389973  |4 aut 
245 1 0 |a Expert-enhanced machine learning for cardiac arrhythmia classification  |c Sebastian Sager, Felix Bernhardt, Florian Kehrle, Maximilian Merkert, Andreas Potschka, Benjamin Meder, Hugo Katus, Eberhard Scholz 
264 1 |c December 23, 2021 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.03.2022 
520 |a We propose a new method for the classification task of distinguishing atrial fibrillation (AFib) from regular atrial tachycardias including atrial flutter (AFlu) based on a surface electrocardiogram (ECG). Recently, many approaches for an automatic classification of cardiac arrhythmia were proposed and to our knowledge none of them can distinguish between these two. We discuss reasons why deep learning may not yield satisfactory results for this task. We generate new and clinically interpretable features using mathematical optimization for subsequent use within a machine learning (ML) model. These features are generated from the same input data by solving an additional regression problem with complicated combinatorial substructures. The resultant can be seen as a novel machine learning model that incorporates expert knowledge on the pathophysiology of atrial flutter. Our approach achieves an unprecedented accuracy of 82.84% and an area under the receiver operating characteristic (ROC) curve of 0.9, which classifies as “excellent” according to the classification indicator of diagnostic tests. One additional advantage of our approach is the inherent interpretability of the classification results. Our features give insight into a possibly occurring multilevel atrioventricular blocking mechanism, which may improve treatment decisions beyond the classification itself. Our research ideally complements existing textbook cardiac arrhythmia classification methods, which cannot provide a classification for the important case of AFib↔AFlu. The main contribution is the successful use of a novel mathematical model for multilevel atrioventricular block and optimization-driven inverse simulation to enhance machine learning for classification of the arguably most difficult cases in cardiac arrhythmia. A tailored Branch-and-Bound algorithm was implemented for the domain knowledge part, while standard algorithms such as Adam could be used for training. 
650 4 |a Arrhythmia 
650 4 |a Atrial fibrillation 
650 4 |a Electrocardiography 
650 4 |a Machine learning 
650 4 |a Machine learning algorithms 
650 4 |a Mathematical models 
650 4 |a Neural networks 
650 4 |a Optimization 
700 1 |a Bernhardt, Felix  |e VerfasserIn  |4 aut 
700 1 |a Kehrle, Florian  |d 1984-  |e VerfasserIn  |0 (DE-588)116049598X  |0 (DE-627)1023734397  |0 (DE-576)505953021  |4 aut 
700 1 |a Merkert, Maximilian  |e VerfasserIn  |0 (DE-588)1020268476  |0 (DE-627)68810973X  |0 (DE-576)360008976  |4 aut 
700 1 |a Potschka, Andreas  |d 1980-  |e VerfasserIn  |0 (DE-588)1019443391  |0 (DE-627)685041166  |0 (DE-576)358073995  |4 aut 
700 1 |a Meder, Benjamin  |e VerfasserIn  |0 (DE-588)135821630  |0 (DE-627)571676316  |0 (DE-576)300664745  |4 aut 
700 1 |a Katus, Hugo  |d 1951-  |e VerfasserIn  |0 (DE-588)108916618  |0 (DE-627)577155040  |0 (DE-576)289625076  |4 aut 
700 1 |a Scholz, Eberhard P.  |d 1978-  |e VerfasserIn  |0 (DE-588)13163660X  |0 (DE-627)512033994  |0 (DE-576)298640589  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 16(2021), 12, Artikel-ID e0261571, Seite 1-22  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a Expert-enhanced machine learning for cardiac arrhythmia classification 
773 1 8 |g volume:16  |g year:2021  |g number:12  |g elocationid:e0261571  |g pages:1-22  |g extent:22  |a Expert-enhanced machine learning for cardiac arrhythmia classification 
856 4 0 |u https://doi.org/10.1371/journal.pone.0261571  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261571  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220321 
993 |a Article 
994 |a 2021 
998 |g 13163660X  |a Scholz, Eberhard P.  |m 13163660X:Scholz, Eberhard P.  |d 50000  |e 50000PS13163660X  |k 0/50000/  |p 8  |y j 
998 |g 108916618  |a Katus, Hugo  |m 108916618:Katus, Hugo  |d 910000  |d 910100  |d 50000  |e 910000PK108916618  |e 910100PK108916618  |e 50000PK108916618  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 7 
998 |g 135821630  |a Meder, Benjamin  |m 135821630:Meder, Benjamin  |d 910000  |d 910100  |d 50000  |e 910000PM135821630  |e 910100PM135821630  |e 50000PM135821630  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 6 
998 |g 1019443391  |a Potschka, Andreas  |m 1019443391:Potschka, Andreas  |d 110000  |e 110000PP1019443391  |k 0/110000/  |p 5 
998 |g 116049598X  |a Kehrle, Florian  |m 116049598X:Kehrle, Florian  |d 910000  |d 910100  |e 910000PK116049598X  |e 910100PK116049598X  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 134228650  |a Sager, Sebastian  |m 134228650:Sager, Sebastian  |p 1  |x j 
999 |a KXP-PPN1796151556  |e 4097000772 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 22.03.2022"],"recId":"1796151556","person":[{"family":"Sager","role":"aut","display":"Sager, Sebastian","given":"Sebastian"},{"family":"Bernhardt","role":"aut","display":"Bernhardt, Felix","given":"Felix"},{"family":"Kehrle","role":"aut","display":"Kehrle, Florian","given":"Florian"},{"role":"aut","family":"Merkert","given":"Maximilian","display":"Merkert, Maximilian"},{"family":"Potschka","role":"aut","display":"Potschka, Andreas","given":"Andreas"},{"given":"Benjamin","display":"Meder, Benjamin","family":"Meder","role":"aut"},{"family":"Katus","role":"aut","given":"Hugo","display":"Katus, Hugo"},{"family":"Scholz","role":"aut","display":"Scholz, Eberhard P.","given":"Eberhard P."}],"name":{"displayForm":["Sebastian Sager, Felix Bernhardt, Florian Kehrle, Maximilian Merkert, Andreas Potschka, Benjamin Meder, Hugo Katus, Eberhard Scholz"]},"language":["eng"],"origin":[{"dateIssuedDisp":"December 23, 2021","dateIssuedKey":"2021"}],"relHost":[{"recId":"523574592","name":{"displayForm":["Public Library of Science"]},"origin":[{"publisher":"PLOS ; PLoS","dateIssuedDisp":"2006-","dateIssuedKey":"2006","publisherPlace":"San Francisco, California, US ; Lawrence, Kan."}],"id":{"zdb":["2267670-3"],"issn":["1932-6203"],"eki":["523574592"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"PLOS ONE","title":"PLOS ONE"}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"pubHistory":["1.2006 -"],"part":{"volume":"16","year":"2021","issue":"12","extent":"22","pages":"1-22","text":"16(2021), 12, Artikel-ID e0261571, Seite 1-22"},"language":["eng"],"disp":"Expert-enhanced machine learning for cardiac arrhythmia classificationPLOS ONE","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"display":"Public Library of Science","role":"isb"}]}],"id":{"eki":["1796151556"],"doi":["10.1371/journal.pone.0261571"]},"physDesc":[{"extent":"22 S."}],"title":[{"title_sort":"Expert-enhanced machine learning for cardiac arrhythmia classification","title":"Expert-enhanced machine learning for cardiac arrhythmia classification"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a SAGERSEBASEXPERTENHA2320