Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning: a systematic study across 23 solid tumor types

In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Löffler, Chiara (VerfasserIn) , Gaisa, Nadine (VerfasserIn) , Muti, Hannah Sophie (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Echle, Amelie (VerfasserIn) , Ghaffari Laleh, Narmin (VerfasserIn) , Trautwein, Christian (VerfasserIn) , Heij, Lara R. (VerfasserIn) , Grabsch, Heike I. (VerfasserIn) , Ortiz Bruechle, Nadina (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 February 2022
In: Frontiers in genetics
Year: 2022, Jahrgang: 12, Pages: 1-13
ISSN:1664-8021
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/article/10.3389/fgene.2021.806386
Volltext
Verfasserangaben:Chiara Maria Lavinia Loeffler, Nadine T. Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R. Heij, Heike I. Grabsch, Nadina Ortiz Bruechle and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 179679760X
003 DE-627
005 20220820153729.0
007 cr uuu---uuuuu
008 220328s2022 xx |||||o 00| ||eng c
035 |a (DE-627)179679760X 
035 |a (DE-599)KXP179679760X 
035 |a (OCoLC)1341457889 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Löffler, Chiara  |e VerfasserIn  |0 (DE-588)1254183493  |0 (DE-627)1796796646  |4 aut 
245 1 0 |a Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning  |b a systematic study across 23 solid tumor types  |c Chiara Maria Lavinia Loeffler, Nadine T. Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R. Heij, Heike I. Grabsch, Nadina Ortiz Bruechle and Jakob Nikolas Kather 
264 1 |c 16 February 2022 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.03.2022 
520 |a In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways. 
700 1 |a Gaisa, Nadine  |d 1978-  |e VerfasserIn  |0 (DE-588)130814229  |0 (DE-627)506011534  |0 (DE-576)298354942  |4 aut 
700 1 |a Muti, Hannah Sophie  |e VerfasserIn  |0 (DE-588)1246552256  |0 (DE-627)1779610890  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Echle, Amelie  |e VerfasserIn  |4 aut 
700 1 |a Ghaffari Laleh, Narmin  |e VerfasserIn  |4 aut 
700 1 |a Trautwein, Christian  |e VerfasserIn  |4 aut 
700 1 |a Heij, Lara R.  |e VerfasserIn  |4 aut 
700 1 |a Grabsch, Heike I.  |e VerfasserIn  |4 aut 
700 1 |a Ortiz Bruechle, Nadina  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in genetics  |d Lausanne : Frontiers Media, 2010  |g 12(2022), Artikel-ID 806386, Seite 1-13  |h Online-Ressource  |w (DE-627)65799829X  |w (DE-600)2606823-0  |w (DE-576)343624826  |x 1664-8021  |7 nnas  |a Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning a systematic study across 23 solid tumor types 
773 1 8 |g volume:12  |g year:2022  |g elocationid:806386  |g pages:1-13  |g extent:13  |a Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning a systematic study across 23 solid tumor types 
856 4 0 |u https://www.frontiersin.org/article/10.3389/fgene.2021.806386  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220328 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11  |y j 
999 |a KXP-PPN179679760X  |e 4104290904 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Chiara Maria Lavinia Loeffler, Nadine T. Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R. Heij, Heike I. Grabsch, Nadina Ortiz Bruechle and Jakob Nikolas Kather"]},"id":{"eki":["179679760X"]},"recId":"179679760X","title":[{"title_sort":"Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning","title":"Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning","subtitle":"a systematic study across 23 solid tumor types"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Löffler","roleDisplay":"VerfasserIn","given":"Chiara","display":"Löffler, Chiara"},{"roleDisplay":"VerfasserIn","given":"Nadine","display":"Gaisa, Nadine","family":"Gaisa","role":"aut"},{"role":"aut","family":"Muti","given":"Hannah Sophie","roleDisplay":"VerfasserIn","display":"Muti, Hannah Sophie"},{"family":"van Treeck","display":"van Treeck, Marko","roleDisplay":"VerfasserIn","given":"Marko","role":"aut"},{"role":"aut","family":"Echle","given":"Amelie","roleDisplay":"VerfasserIn","display":"Echle, Amelie"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Ghaffari Laleh, Narmin","given":"Narmin","family":"Ghaffari Laleh"},{"family":"Trautwein","roleDisplay":"VerfasserIn","given":"Christian","display":"Trautwein, Christian","role":"aut"},{"family":"Heij","given":"Lara R.","roleDisplay":"VerfasserIn","display":"Heij, Lara R.","role":"aut"},{"family":"Grabsch","roleDisplay":"VerfasserIn","given":"Heike I.","display":"Grabsch, Heike I.","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Nadina","display":"Ortiz Bruechle, Nadina","family":"Ortiz Bruechle","role":"aut"},{"display":"Kather, Jakob Nikolas","roleDisplay":"VerfasserIn","given":"Jakob Nikolas","family":"Kather","role":"aut"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"16 February 2022"}],"language":["eng"],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 03.05.11"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"pages":"1-13","year":"2022","text":"12(2022), Artikel-ID 806386, Seite 1-13","extent":"13","volume":"12"},"disp":"Predicting mutational status of driver and suppressor genes directly from histopathology with deep learning a systematic study across 23 solid tumor typesFrontiers in genetics","language":["eng"],"title":[{"title_sort":"Frontiers in genetics","title":"Frontiers in genetics"}],"id":{"zdb":["2606823-0"],"eki":["65799829X"],"issn":["1664-8021"]},"recId":"65799829X","origin":[{"publisher":"Frontiers Media","dateIssuedDisp":"2010-","publisherPlace":"Lausanne","dateIssuedKey":"2010"}],"pubHistory":["1.2010 -"]}],"physDesc":[{"extent":"13 S."}],"note":["Gesehen am 28.03.2022"]} 
SRT |a LOEFFLERCHPREDICTING1620