Automated archaeological feature detection using deep learning on optical UAV imagery: preliminary results

This communication article provides a call for unmanned aerial vehicle (UAV) users in archaeology to make imagery data more publicly available while developing a new application to facilitate the use of a common deep learning algorithm (mask region-based convolutional neural network; Mask R-CNN) for...

Full description

Saved in:
Bibliographic Details
Main Authors: Altaweel, Mark (Author) , Khelifi, Adel (Author) , Li, Zehao (Author) , Squitieri, Andrea (Author) , Basmaji, Tasnim (Author) , Ghazal, Mohammed (Author)
Format: Article (Journal)
Language:English
Published: 24 January 2022
In: Remote sensing
Year: 2022, Volume: 14, Issue: 3, Pages: 1-15
ISSN:2072-4292
DOI:10.3390/rs14030553
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/rs14030553
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-4292/14/3/553
Get full text
Author Notes:Mark Altaweel, Adel Khelifi, Zehao Li, Andrea Squitieri, Tasnim Basmaji and Mohammed Ghazal

MARC

LEADER 00000caa a2200000 c 4500
001 1797008242
003 DE-627
005 20220820154414.0
007 cr uuu---uuuuu
008 220330s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/rs14030553  |2 doi 
035 |a (DE-627)1797008242 
035 |a (DE-599)KXP1797008242 
035 |a (OCoLC)1341458207 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 60  |2 sdnb 
100 1 |a Altaweel, Mark  |e VerfasserIn  |0 (DE-588)1159647100  |0 (DE-627)1022299468  |0 (DE-576)286645394  |4 aut 
245 1 0 |a Automated archaeological feature detection using deep learning on optical UAV imagery  |b preliminary results  |c Mark Altaweel, Adel Khelifi, Zehao Li, Andrea Squitieri, Tasnim Basmaji and Mohammed Ghazal 
264 1 |c 24 January 2022 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.03.2022 
520 |a This communication article provides a call for unmanned aerial vehicle (UAV) users in archaeology to make imagery data more publicly available while developing a new application to facilitate the use of a common deep learning algorithm (mask region-based convolutional neural network; Mask R-CNN) for instance segmentation. The intent is to provide specialists with a GUI-based tool that can apply annotation used for training for neural network models, enable training and development of segmentation models, and allow classification of imagery data to facilitate auto-discovery of features. The tool is generic and can be used for a variety of settings, although the tool was tested using datasets from the United Arab Emirates (UAE), Oman, Iran, Iraq, and Jordan. Current outputs suggest that trained data are able to help identify ruined structures, that is, structures such as burials, exposed building ruins, and other surface features that are in some degraded state. Additionally, qanat(s), or ancient underground channels having surface access holes, and mounded sites, which have distinctive hill-shaped features, are also identified. Other classes are also possible, and the tool helps users make their own training-based approach and feature identification classes. To improve accuracy, we strongly urge greater publication of UAV imagery data by projects using open journal publications and public repositories. This is something done in other fields with UAV data and is now needed in heritage and archaeology. Our tool is provided as part of the outputs given. 
650 4 |a archaeology 
650 4 |a deep learning 
650 4 |a feature detection 
650 4 |a high-performance computing 
650 4 |a optical 
650 4 |a software 
650 4 |a unmanned aerial vehicles 
700 1 |a Khelifi, Adel  |e VerfasserIn  |4 aut 
700 1 |a Li, Zehao  |e VerfasserIn  |4 aut 
700 1 |a Squitieri, Andrea  |e VerfasserIn  |0 (DE-588)1133040233  |0 (DE-627)888185553  |0 (DE-576)489070523  |4 aut 
700 1 |a Basmaji, Tasnim  |e VerfasserIn  |4 aut 
700 1 |a Ghazal, Mohammed  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Remote sensing  |d Basel : MDPI, 2009  |g 14(2022), 3 vom: Feb., Artikel-ID 553, Seite 1-15  |h Online-Ressource  |w (DE-627)608937916  |w (DE-600)2513863-7  |w (DE-576)310882532  |x 2072-4292  |7 nnas  |a Automated archaeological feature detection using deep learning on optical UAV imagery preliminary results 
773 1 8 |g volume:14  |g year:2022  |g number:3  |g month:02  |g elocationid:553  |g pages:1-15  |g extent:15  |a Automated archaeological feature detection using deep learning on optical UAV imagery preliminary results 
856 4 0 |u https://doi.org/10.3390/rs14030553  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-4292/14/3/553  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220330 
993 |a Article 
994 |a 2022 
998 |g 1133040233  |a Squitieri, Andrea  |m 1133040233:Squitieri, Andrea  |d 70000  |d 71700  |d 71770  |e 70000PS1133040233  |e 71700PS1133040233  |e 71770PS1133040233  |k 0/70000/  |k 1/70000/71700/  |k 2/70000/71700/71770/  |p 4 
999 |a KXP-PPN1797008242  |e 4106875268 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Altaweel, Mark","role":"aut","family":"Altaweel","given":"Mark"},{"family":"Khelifi","given":"Adel","display":"Khelifi, Adel","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Li","given":"Zehao","roleDisplay":"VerfasserIn","display":"Li, Zehao","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Squitieri, Andrea","given":"Andrea","family":"Squitieri"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Basmaji, Tasnim","given":"Tasnim","family":"Basmaji"},{"given":"Mohammed","family":"Ghazal","role":"aut","roleDisplay":"VerfasserIn","display":"Ghazal, Mohammed"}],"title":[{"title_sort":"Automated archaeological feature detection using deep learning on optical UAV imagery","subtitle":"preliminary results","title":"Automated archaeological feature detection using deep learning on optical UAV imagery"}],"language":["eng"],"recId":"1797008242","note":["Gesehen am 30.03.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Mark Altaweel, Adel Khelifi, Zehao Li, Andrea Squitieri, Tasnim Basmaji and Mohammed Ghazal"]},"id":{"doi":["10.3390/rs14030553"],"eki":["1797008242"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"24 January 2022"}],"relHost":[{"id":{"eki":["608937916"],"zdb":["2513863-7"],"issn":["2072-4292"]},"origin":[{"publisherPlace":"Basel","dateIssuedDisp":"2009-","publisher":"MDPI","dateIssuedKey":"2009"}],"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Remote sensing","title":"Remote sensing"}],"part":{"volume":"14","text":"14(2022), 3 vom: Feb., Artikel-ID 553, Seite 1-15","extent":"15","year":"2022","pages":"1-15","issue":"3"},"pubHistory":["1.2009 -"],"language":["eng"],"recId":"608937916","disp":"Automated archaeological feature detection using deep learning on optical UAV imagery preliminary resultsRemote sensing","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 06.09.10"]}],"physDesc":[{"extent":"15 S."}]} 
SRT |a ALTAWEELMAAUTOMATEDA2420