DeepNC: Deep generative Network Completion

Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing networ...

Full description

Saved in:
Bibliographic Details
Main Authors: Cong Tran (Author) , Shin, Won-Yong (Author) , Spitz, Andreas (Author) , Gertz, Michael (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: IEEE transactions on pattern analysis and machine intelligence
Year: 2022, Volume: 44, Issue: 4, Pages: 1837-1852
ISSN:1939-3539
DOI:10.1109/TPAMI.2020.3032286
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TPAMI.2020.3032286
Get full text
Author Notes:Cong Tran, student member, IEEE, Won-Yong Shin, senior member, IEEE, Andreas Spitz, and Michael Gertz

MARC

LEADER 00000caa a2200000 c 4500
001 179742436X
003 DE-627
005 20220820160216.0
007 cr uuu---uuuuu
008 220404s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3032286  |2 doi 
035 |a (DE-627)179742436X 
035 |a (DE-599)KXP179742436X 
035 |a (OCoLC)1341458216 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 0 |a Cong Tran  |e VerfasserIn  |0 (DE-588)1254847839  |0 (DE-627)1797634666  |4 aut 
245 1 0 |a DeepNC  |b Deep generative Network Completion  |c Cong Tran, student member, IEEE, Won-Yong Shin, senior member, IEEE, Andreas Spitz, and Michael Gertz 
264 1 |c 2022 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date of publication 19 Oct. 2020 
500 |a Gesehen am 05.04.2022 
520 |a Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient $\sf DeepNC$DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches. 
650 4 |a Autoregressive generative model 
650 4 |a deep generative model of graphs 
650 4 |a Deep learning 
650 4 |a inference 
650 4 |a Matrix decomposition 
650 4 |a network completion 
650 4 |a partially observable network 
650 4 |a Pattern analysis 
650 4 |a Prediction algorithms 
650 4 |a Predictive models 
650 4 |a Social networking (online) 
700 1 |a Shin, Won-Yong  |e VerfasserIn  |4 aut 
700 1 |a Spitz, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Gertz, Michael  |e VerfasserIn  |0 (DE-588)1038076579  |0 (DE-627)756636973  |0 (DE-576)392095645  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on pattern analysis and machine intelligence  |d New York, NY : IEEE, 1979  |g 44(2022), 4, Seite 1837-1852  |h Online-Ressource  |w (DE-627)324486421  |w (DE-600)2027336-8  |w (DE-576)094110980  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:4  |g pages:1837-1852  |g extent:16  |a DeepNC Deep generative Network Completion 
856 4 0 |u https://doi.org/10.1109/TPAMI.2020.3032286  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220404 
993 |a Article 
994 |a 2022 
998 |g 1038076579  |a Gertz, Michael  |m 1038076579:Gertz, Michael  |d 110000  |d 110300  |e 110000PG1038076579  |e 110300PG1038076579  |k 0/110000/  |k 1/110000/110300/  |p 4  |y j 
999 |a KXP-PPN179742436X  |e 4111798411 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1109/TPAMI.2020.3032286"],"eki":["179742436X"]},"name":{"displayForm":["Cong Tran, student member, IEEE, Won-Yong Shin, senior member, IEEE, Andreas Spitz, and Michael Gertz"]},"recId":"179742436X","physDesc":[{"extent":"16 S."}],"title":[{"title":"DeepNC","title_sort":"DeepNC","subtitle":"Deep generative Network Completion"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Date of publication 19 Oct. 2020","Gesehen am 05.04.2022"],"origin":[{"dateIssuedDisp":"2022","dateIssuedKey":"2022"}],"relHost":[{"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 07. März 2019"],"title":[{"title":"IEEE transactions on pattern analysis and machine intelligence","title_sort":"IEEE transactions on pattern analysis and machine intelligence","subtitle":"TPAMI"}],"origin":[{"publisher":"IEEE","dateIssuedKey":"1979","dateIssuedDisp":"1979-","publisherPlace":"New York, NY"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence","physDesc":[{"extent":"Online-Ressource"}],"recId":"324486421","id":{"eki":["324486421"],"issn":["1939-3539"],"zdb":["2027336-8"]},"part":{"year":"2022","volume":"44","pages":"1837-1852","extent":"16","text":"44(2022), 4, Seite 1837-1852","issue":"4"},"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"titleAlt":[{"title":"Transactions on pattern analysis and machine intelligence"},{"title":"TPAMI"}],"pubHistory":["1.1979 -"]}],"person":[{"family":"Cong Tran","role":"aut","given":"","display":"Cong Tran"},{"role":"aut","given":"Won-Yong","family":"Shin","display":"Shin, Won-Yong"},{"role":"aut","given":"Andreas","family":"Spitz","display":"Spitz, Andreas"},{"display":"Gertz, Michael","family":"Gertz","role":"aut","given":"Michael"}]} 
SRT |a CONGTRANSHDEEPNC2022