BayesFlow: learning complex stochastic models with invertible neural networks

Estimating the parameters of mathematical models is a common problem in almost all branches of science. However, this problem can prove notably difficult when processes and model descriptions become increasingly complex and an explicit likelihood function is not available. With this work, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Radev, Stefan (VerfasserIn) , Mertens, Ulf K. (VerfasserIn) , Voß, Andreas (VerfasserIn) , Ardizzone, Lynton (VerfasserIn) , Köthe, Ullrich (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: IEEE transactions on neural networks and learning systems
Year: 2022, Jahrgang: 33, Heft: 4, Pages: 1452-1466
ISSN:2162-2388
DOI:10.1109/TNNLS.2020.3042395
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TNNLS.2020.3042395
Volltext
Verfasserangaben:Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe, Member, IEEE

MARC

LEADER 00000caa a2200000 c 4500
001 1801173818
003 DE-627
005 20220820175833.0
007 cr uuu---uuuuu
008 220509s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TNNLS.2020.3042395  |2 doi 
035 |a (DE-627)1801173818 
035 |a (DE-599)KXP1801173818 
035 |a (OCoLC)1341459739 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Radev, Stefan  |d 1993-  |e VerfasserIn  |0 (DE-588)1155312392  |0 (DE-627)1016724993  |0 (DE-576)501536248  |4 aut 
245 1 0 |a BayesFlow  |b learning complex stochastic models with invertible neural networks  |c Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe, Member, IEEE 
264 1 |c 2022 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date of publication: 18 December 2020 
500 |a Gesehen am 31.05.2022 
520 |a Estimating the parameters of mathematical models is a common problem in almost all branches of science. However, this problem can prove notably difficult when processes and model descriptions become increasingly complex and an explicit likelihood function is not available. With this work, we propose a novel method for globally amortized Bayesian inference based on invertible neural networks that we call BayesFlow. The method uses simulations to learn a global estimator for the probabilistic mapping from observed data to underlying model parameters. A neural network pretrained in this way can then, without additional training or optimization, infer full posteriors on arbitrarily many real data sets involving the same model family. In addition, our method incorporates a summary network trained to embed the observed data into maximally informative summary statistics. Learning summary statistics from data makes the method applicable to modeling scenarios where standard inference techniques with handcrafted summary statistics fail. We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science, and ecology. We argue that BayesFlow provides a general framework for building amortized Bayesian parameter estimation machines for any forward model from which data can be simulated. 
650 4 |a Bayes methods 
650 4 |a Bayesian inference 
650 4 |a Biological system modeling 
650 4 |a computational and artificial intelligence 
650 4 |a Data models 
650 4 |a Estimation 
650 4 |a machine learning 
650 4 |a neural networks 
650 4 |a Neural networks 
650 4 |a Numerical models 
650 4 |a statistical learning 
650 4 |a Training 
700 1 |a Mertens, Ulf K.  |d 1989-  |e VerfasserIn  |0 (DE-588)1147723338  |0 (DE-627)1006745602  |0 (DE-576)414122860  |4 aut 
700 1 |a Voß, Andreas  |d 1972-  |e VerfasserIn  |0 (DE-588)1028372574  |0 (DE-627)730618919  |0 (DE-576)375905065  |4 aut 
700 1 |a Ardizzone, Lynton  |d 1994-  |e VerfasserIn  |0 (DE-588)1194988512  |0 (DE-627)1677182296  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on neural networks and learning systems  |d [New York, NY] : IEEE, 2012  |g 33(2022), 4, Seite 1452-1466  |h Online-Ressource  |w (DE-627)68207084X  |w (DE-600)2644189-5  |w (DE-576)356322246  |x 2162-2388  |7 nnas 
773 1 8 |g volume:33  |g year:2022  |g number:4  |g pages:1452-1466  |g extent:15  |a BayesFlow learning complex stochastic models with invertible neural networks 
856 4 0 |u https://doi.org/10.1109/TNNLS.2020.3042395  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220509 
993 |a Article 
994 |a 2022 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 5  |y j 
998 |g 1194988512  |a Ardizzone, Lynton  |m 1194988512:Ardizzone, Lynton  |d 110000  |e 110000PA1194988512  |k 0/110000/  |p 4 
998 |g 1028372574  |a Voß, Andreas  |m 1028372574:Voß, Andreas  |d 100000  |d 100200  |e 100000PV1028372574  |e 100200PV1028372574  |k 0/100000/  |k 1/100000/100200/  |p 3 
998 |g 1147723338  |a Mertens, Ulf K.  |m 1147723338:Mertens, Ulf K.  |p 2 
998 |g 1155312392  |a Radev, Stefan  |m 1155312392:Radev, Stefan  |d 100000  |d 100200  |d 700000  |d 728500  |e 100000PR1155312392  |e 100200PR1155312392  |e 700000PR1155312392  |e 728500PR1155312392  |k 0/100000/  |k 1/100000/100200/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1801173818  |e 4130251325 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"publisher":"IEEE","dateIssuedKey":"2012","dateIssuedDisp":"2012-","publisherPlace":"[New York, NY]"}],"title":[{"title":"IEEE transactions on neural networks and learning systems","title_sort":"IEEE transactions on neural networks and learning systems"}],"note":["Gesehen am 02.02.12"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"68207084X","physDesc":[{"extent":"Online-Ressource"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on neural networks and learning systems","titleAlt":[{"title":"Neural networks and learning systems"},{"title":"Transactions on neural networks and learning systems"}],"pubHistory":["23.2012 -"],"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"part":{"year":"2022","volume":"33","pages":"1452-1466","extent":"15","text":"33(2022), 4, Seite 1452-1466","issue":"4"},"id":{"eki":["68207084X"],"issn":["2162-2388"],"zdb":["2644189-5"]}}],"person":[{"role":"aut","given":"Stefan","family":"Radev","display":"Radev, Stefan"},{"display":"Mertens, Ulf K.","family":"Mertens","role":"aut","given":"Ulf K."},{"display":"Voß, Andreas","given":"Andreas","role":"aut","family":"Voß"},{"role":"aut","given":"Lynton","family":"Ardizzone","display":"Ardizzone, Lynton"},{"family":"Köthe","given":"Ullrich","role":"aut","display":"Köthe, Ullrich"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}],"title":[{"subtitle":"learning complex stochastic models with invertible neural networks","title":"BayesFlow","title_sort":"BayesFlow"}],"note":["Date of publication: 18 December 2020","Gesehen am 31.05.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1801173818","physDesc":[{"extent":"15 S."}],"name":{"displayForm":["Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe, Member, IEEE"]},"id":{"eki":["1801173818"],"doi":["10.1109/TNNLS.2020.3042395"]}} 
SRT |a RADEVSTEFABAYESFLOW2022