C0-robustness of topological entropy for geodesic flows

In this paper, we study the regularity of topological entropy, as a function on the space of Riemannian metrics endowed with the C0 topology. We establish several instances of entropy robustness (persistence of positive entropy after small C0 perturbations). A large part of this paper is dedicated t...

Full description

Saved in:
Bibliographic Details
Main Authors: Alves, Marcelo R. R. (Author) , Dahinden, Lucas (Author) , Meiwes, Matthias (Author) , Merlin, Louis (Author)
Format: Article (Journal)
Language:English
Published: 29 April 2022
In: Journal of fixed point theory and applications
Year: 2022, Volume: 24, Issue: 2, Pages: 1-43
ISSN:1661-7746
DOI:10.1007/s11784-022-00959-4
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s11784-022-00959-4
Get full text
Author Notes:Marcelo R.R. Alves, Lucas Dahinden, Matthias Meiwes and Louis Merlin

MARC

LEADER 00000caa a2200000 c 4500
001 1803979968
003 DE-627
005 20220820185548.0
007 cr uuu---uuuuu
008 220520s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11784-022-00959-4  |2 doi 
035 |a (DE-627)1803979968 
035 |a (DE-599)KXP1803979968 
035 |a (OCoLC)1341460338 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Alves, Marcelo R. R.  |d 1986-  |e VerfasserIn  |0 (DE-588)1257986163  |0 (DE-627)1803981393  |4 aut 
245 1 0 |a C0-robustness of topological entropy for geodesic flows  |c Marcelo R.R. Alves, Lucas Dahinden, Matthias Meiwes and Louis Merlin 
246 3 3 |a C 0-robustness of topological entropy for geodesic flows 
264 1 |c 29 April 2022 
300 |a 43 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Text ist "0" hochgestellt 
500 |a Gesehen am 20.05.2022 
520 |a In this paper, we study the regularity of topological entropy, as a function on the space of Riemannian metrics endowed with the C0 topology. We establish several instances of entropy robustness (persistence of positive entropy after small C0 perturbations). A large part of this paper is dedicated to metrics on the two-dimensional torus, for which our main results are that metrics with a contractible closed geodesic have robust entropy (thus, generalizing and quantifying a result of Denvir-Mackay) and that metrics with robust positive entropy on the torus are C infty generic. Moreover, we quantify the asymptotic behavior of volume entropy in the Teichmüller space of hyperbolic metrics on a punctured torus, which bounds from below the topological entropy for these metrics. For general closed manifolds of dimension at least 2, we prove that the set of metrics with robust and large positive entropy is C0-large in the sense that it is dense and contains cones and arbitrarily large balls. 
650 4 |a 37D40 
650 4 |a 53D25 
650 4 |a Primary 37B40 
700 1 |a Dahinden, Lucas  |e VerfasserIn  |0 (DE-588)1210204797  |0 (DE-627)1698267231  |4 aut 
700 1 |a Meiwes, Matthias  |e VerfasserIn  |4 aut 
700 1 |a Merlin, Louis  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of fixed point theory and applications  |d Cham (ZG) : Springer International Publishing AG, 2007  |g 24(2022), 2, Artikel-ID 42, Seite 1-43  |h Online-Ressource  |w (DE-627)546007236  |w (DE-600)2389415-5  |w (DE-576)30683510X  |x 1661-7746  |7 nnas  |a C0-robustness of topological entropy for geodesic flows 
773 1 8 |g volume:24  |g year:2022  |g number:2  |g elocationid:42  |g pages:1-43  |g extent:43  |a C0-robustness of topological entropy for geodesic flows 
856 4 0 |u https://doi.org/10.1007/s11784-022-00959-4  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220520 
993 |a Article 
994 |a 2022 
998 |g 1210204797  |a Dahinden, Lucas  |m 1210204797:Dahinden, Lucas  |d 700000  |d 728500  |e 700000PD1210204797  |e 728500PD1210204797  |k 0/700000/  |k 1/700000/728500/  |p 2 
999 |a KXP-PPN1803979968  |e 4136485999 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1803979968"],"doi":["10.1007/s11784-022-00959-4"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"29 April 2022"}],"name":{"displayForm":["Marcelo R.R. Alves, Lucas Dahinden, Matthias Meiwes and Louis Merlin"]},"relHost":[{"pubHistory":["1.2007 -"],"titleAlt":[{"title":"JFPTA"}],"part":{"extent":"43","volume":"24","text":"24(2022), 2, Artikel-ID 42, Seite 1-43","issue":"2","pages":"1-43","year":"2022"},"note":["Gesehen am 15.01.13"],"disp":"C0-robustness of topological entropy for geodesic flowsJournal of fixed point theory and applications","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"546007236","title":[{"title_sort":"Journal of fixed point theory and applications","title":"Journal of fixed point theory and applications","subtitle":"JFPTA"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Cham (ZG) ; Basel [u.a.] ; Berlin ; [Basel]","dateIssuedDisp":"2007-","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG","dateIssuedKey":"2007"}],"id":{"issn":["1661-7746"],"eki":["546007236"],"zdb":["2389415-5"]}}],"physDesc":[{"extent":"43 S."}],"title":[{"title":"C0-robustness of topological entropy for geodesic flows","title_sort":"C0-robustness of topological entropy for geodesic flows"}],"person":[{"family":"Alves","given":"Marcelo R. R.","display":"Alves, Marcelo R. R.","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Dahinden","given":"Lucas","roleDisplay":"VerfasserIn","display":"Dahinden, Lucas","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Meiwes, Matthias","given":"Matthias","family":"Meiwes"},{"family":"Merlin","given":"Louis","display":"Merlin, Louis","roleDisplay":"VerfasserIn","role":"aut"}],"titleAlt":[{"title":"C 0-robustness of topological entropy for geodesic flows"}],"recId":"1803979968","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Text ist \"0\" hochgestellt","Gesehen am 20.05.2022"]} 
SRT |a ALVESMARCEC0ROBUSTNE2920