How to GAN higher jet resolution

QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baldi, Pierre (VerfasserIn) , Blecher, Lukas (VerfasserIn) , Butter, Anja (VerfasserIn) , Collado, Julian (VerfasserIn) , Howard, Jessica N. (VerfasserIn) , Keilbach, Fabian (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Kasieczka, Gregor (VerfasserIn) , Whiteson, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2020
In: Arxiv
Year: 2020, Pages: 1-25
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2012.11944
Volltext
Verfasserangaben:Pierre Baldi, Lukas Blecher, Anja Butter, Julian Collado, Jessica N. Howard, Fabian Keilbach, Tilman Plehn, Gregor Kasieczka, and Daniel Whiteson
Beschreibung
Zusammenfassung:QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduces their main features even without training on pure samples. In addition, we show how a slim network architecture can be constructed once we have control of the full network performance.
Beschreibung:Identifizierung der Ressource nach: December 3, 2021
Gesehen am 20.05.2022
Beschreibung:Online Resource