Dimensional reconstruction of psychotic disorders through multi-task learning

Schizophrenia is a severe and heritable disorder affecting approximately 1% of the population. It has become clear that an improved mechanistic understanding of its underlying biology is a critical factor for improving the clinical management of schizophrenia, for refining the current diagnostic sys...

Full description

Saved in:
Bibliographic Details
Main Author: Cao, Han (Author)
Format: Book/Monograph Thesis
Language:English
Published: Heidelberg 02 Mai 2022
DOI:10.11588/heidok.00031540
Subjects:
Online Access:Resolving-System, kostenfrei: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-315402
Resolving-System, kostenfrei: http://dx.doi.org/10.11588/heidok.00031540
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/31540
Resolving-System: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-315402
Langzeitarchivierung Nationalbibliothek: https://d-nb.info/1256685186/34
Get full text
Author Notes:vorgelegt von Han Cao ; Referent: Dr. Emanuel Schwarz

MARC

LEADER 00000cam a2200000 c 4500
001 180411930X
003 DE-627
005 20240724134858.0
007 cr uuu---uuuuu
008 220523s2022 gw |||||om 00| ||eng c
024 7 |a urn:nbn:de:bsz:16-heidok-315402  |2 urn 
024 7 |a 10.11588/heidok.00031540  |2 doi 
035 |a (DE-627)180411930X 
035 |a (DE-599)KXP180411930X 
035 |a (OCoLC)1319432133 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 |a 616.89  |q DE-101 
082 0 4 |a 610  |q DE-101 
084 |a 33  |2 sdnb 
084 |a 33  |2 sdnb 
100 1 |a Cao, Han  |d 1987-  |e VerfasserIn  |0 (DE-588)1156200083  |0 (DE-627)1018678115  |0 (DE-576)502030283  |4 aut 
245 1 0 |a Dimensional reconstruction of psychotic disorders through multi-task learning  |c vorgelegt von Han Cao ; Referent: Dr. Emanuel Schwarz 
264 1 |a Heidelberg  |c 02 Mai 2022 
300 |a 1 Online-Ressource (89 Seiten) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
502 |b Dissertation  |c Ruprecht-Karls-Universität zu Heidelberg  |d 2022 
520 |a Schizophrenia is a severe and heritable disorder affecting approximately 1% of the population. It has become clear that an improved mechanistic understanding of its underlying biology is a critical factor for improving the clinical management of schizophrenia, for refining the current diagnostic system, and for advancing psychiatry closer to precision medicine. Advanced sequencing technology has led to a fast accumulation of molecular data. Combined with the availability of extensive computing resources and sophisticated ML methods, data science is playing an increasingly important role in schizophrenia research. However, dimensionality of data, as well as the availability of different modalities, may increase faster than the number of individuals for whom such data is available, which may lead to a loss of predictive value and interpretability of algorithms derived from molecular studies. To address this, the present thesis conducted methodological developments in two areas. First, a significant effort at the algorithmic and computational level has been made to provide the MTL algorithms as a useful tool for both individual researchers and large-scale collaboration projects. RMTL (standalone MTL package) supports a “simultaneous approach” for signature identification in heterogeneous, multi-modal datasets, e.g., for comorbidity analysis and the prediction of multiple clinical outcomes. We showed that such heterogeneity could be captured by cross-task regularization. dsMTL (federated MTL package) supports a secure MTL analysis for geographically distributed datasets. Due to the requirement of privacy protection, the institution-level heterogeneity is challenging to remove when each dataset is analyzed individually. To address this, dsMTL provides a distributed learning system resilient to such heterogeneity. We also showed that dsMTL was computationally efficient for the typical scale of molecular studies. Second, focusing on gene expression studies of schizophrenia, this thesis explored computational approaches to extract meaningful and biologically reproducible signatures. We found an expression signature associated with schizophrenia as well as T2D, which implied mitochondrial dysfunction and oxidative stress as a unifying theme underlying the comorbidity of these conditions. We also identified a highly accurate, consistent and robust signature in heterogeneous expression cohorts of schizophrenia and controls using MTL. 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Schwarz, Emanuel  |e AkademischeR BetreuerIn  |0 (DE-588)1055051260  |0 (DE-627)792581040  |0 (DE-576)411121596  |4 dgs 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Cao, Han, 1987 -   |t Dimensional reconstruction of psychotic disorders through multi-task learning  |d Heidelberg, 2021  |h 89 Blätter  |w (DE-627)1807339734 
856 4 0 |u https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-315402  |q application/pdf  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://dx.doi.org/10.11588/heidok.00031540  |v 2022-06-27  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://www.ub.uni-heidelberg.de/archiv/31540  |q application/pdf  |v 2022-06-27  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-315402  |v 2022-06-27  |x Resolving-System 
856 4 0 |u https://d-nb.info/1256685186/34  |v 2022-06-27  |x Langzeitarchivierung Nationalbibliothek 
912 |a GBV-ODiss 
951 |a BO 
992 |a 20220523 
993 |a Thesis 
994 |a 2022 
998 |g 1156200083  |a Cao, Han  |m 1156200083:Cao, Han  |d 60000  |d 60001  |e 60000PC1156200083  |e 60001PC1156200083  |k 0/60000/  |k 1/60000/60001/  |p 1  |x j  |y j 
999 |a KXP-PPN180411930X  |e 4138448438 
BIB |a Y 
JSO |a {"title":[{"title":"Dimensional reconstruction of psychotic disorders through multi-task learning","title_sort":"Dimensional reconstruction of psychotic disorders through multi-task learning"}],"physDesc":[{"extent":"1 Online-Ressource (89 Seiten)"}],"name":{"displayForm":["vorgelegt von Han Cao ; Referent: Dr. Emanuel Schwarz"]},"origin":[{"dateIssuedDisp":"02 Mai 2022","publisherPlace":"Heidelberg","dateIssuedKey":"2022"}],"type":{"bibl":"thesis","media":"Online-Ressource"},"id":{"eki":["180411930X"],"uri":["urn:nbn:de:bsz:16-heidok-315402"],"doi":["10.11588/heidok.00031540"]},"recId":"180411930X","person":[{"given":"Han","family":"Cao","role":"aut","display":"Cao, Han"},{"display":"Schwarz, Emanuel","role":"dgs","family":"Schwarz","given":"Emanuel"}],"language":["eng"],"noteThesis":["Dissertation. - Ruprecht-Karls-Universität zu Heidelberg. - 2022"]} 
SRT |a CAOHANDIMENSIONA0220