Phase structure and graviton propagators in lattice formulations of four-dimensional quantum gravity

We examine the phase structure of standard Regge calculus in four dimensions and compare our Monte Carlo results with those of the -Regge model as well as with another formulation of lattice gravity derived from group-theoretical considerations. Within all of the three models of quantum gravity we f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riedler, Jürgen (VerfasserIn) , Beirl, Wolfgang (VerfasserIn) , Bittner, Elmar (VerfasserIn) , Hauke, Alf (VerfasserIn) , Homolka, Peter (VerfasserIn) , Markum, Harald (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1999
In: Classical and quantum gravity
Year: 1999, Jahrgang: 16, Heft: 4, Pages: 1163-1173
ISSN:1361-6382
DOI:10.1088/0264-9381/16/4/006
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/0264-9381/16/4/006
Volltext
Verfasserangaben:Jürgen Riedler, Wolfgang Beirl, Elmar Bittner, Alf Hauke, Peter Homolka and Harald Markum
Beschreibung
Zusammenfassung:We examine the phase structure of standard Regge calculus in four dimensions and compare our Monte Carlo results with those of the -Regge model as well as with another formulation of lattice gravity derived from group-theoretical considerations. Within all of the three models of quantum gravity we find an extension of the well-defined phase to negative gravitational couplings and a new phase transition. In contrast to the well known transition at positive coupling there is evidence for a continuous phase transition which is essential for a continuum limit. We calculate two-point functions between geometrical quantities at the corresponding critical point and estimate the masses of the respective interaction particles.
Beschreibung:Gesehen am 18.10.2022
Beschreibung:Online Resource
ISSN:1361-6382
DOI:10.1088/0264-9381/16/4/006