Vortex-line percolation in the three-dimensional complex Ginzburg-Landau model

We study the phase transition of the three-dimensional complex |psi|^4 theory by considering the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we examine an alternative for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bittner, Elmar (VerfasserIn) , Krinner, Axel (VerfasserIn) , Janke, Wolfhard (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Sep 2005
In: Arxiv
Year: 2005, Pages: 1-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/hep-lat/0509105
Volltext
Verfasserangaben:Elmar Bittner, Axel Krinner and Wolfhard Janke
Beschreibung
Zusammenfassung:We study the phase transition of the three-dimensional complex |psi|^4 theory by considering the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we examine an alternative formulation of the geometrical excitations in relation to the global O(2)-symmetry breaking, and check if both of them exhibit the same critical behavior leading to the same critical exponents and therefore to a consistent description of the phase transition. Different percolation observables are taken into account and compared with each other. We find that different definitions of constructing the vortex-loop network lead to different results in the thermodynamic limit, and the percolation thresholds do not coincide with the thermodynamic phase transition point.
Beschreibung:Gesehen am 13.10.2022
Beschreibung:Online Resource