High-precision anomalous dimension of 3d percolation from giant cluster slicing

We apply the critical geometry approach for bounded critical phenomena [1] to $3d$ percolation. The functional shape of the order parameter profile $\phi$ is related via the fractional Yamabe equation to its scaling dimension $\Delta_{\phi}$. We obtain $\Delta_{\phi}= 0.4785(7)$ from which the anoma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Galvani, Alessandro (VerfasserIn) , Trombettoni, Andrea (VerfasserIn) , Gori, Giacomo (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 25 Oct 2021
In: Arxiv
Year: 2021, Pages: 1-11
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2110.13232
Volltext
Verfasserangaben:Alessandro Galvani, Andrea Trombettoni, and Giacomo Gori
Beschreibung
Zusammenfassung:We apply the critical geometry approach for bounded critical phenomena [1] to $3d$ percolation. The functional shape of the order parameter profile $\phi$ is related via the fractional Yamabe equation to its scaling dimension $\Delta_{\phi}$. We obtain $\Delta_{\phi}= 0.4785(7)$ from which the anomalous dimension $\eta$ is found to be $\eta=-0.0431(14)$, a value compatible with, and more precise than, its previous direct measurements. A test of hyperscaling is also performed.
Beschreibung:Gesehen am 07.10.2022
Beschreibung:Online Resource