The tensor Harish-Chandra-Itzykson-Zuber integral: I. Weingarten calculus and a generalization of monotone Hurwitz numbers

We study a generalization of the Harish-Chandra - Itzykson - Zuber integral to tensors and its expansion over trace-invariants of the two external tensors. This gives rise to natural generalizations of monotone double Hurwitz numbers, which count certain families of constellations. We find an expres...

Full description

Saved in:
Bibliographic Details
Main Authors: Collins, Benoît (Author) , Gurǎu, Rǎzvan (Author) , Lionni, Luca (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 25 Jan 2022
Edition:Version v2
In: Arxiv
Year: 2020, Pages: 1-43
Online Access:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2010.13661
Get full text
Author Notes:Benoît Collins, Razvan Gurau, Luca Lionni

MARC

LEADER 00000caa a2200000 c 4500
001 1804433136
003 DE-627
005 20221005185312.0
007 cr uuu---uuuuu
008 220527r20222020xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2010.13661  |2 doi 
035 |a (DE-627)1804433136 
035 |a (DE-599)KXP1804433136 
035 |a (OCoLC)1341460134 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Collins, Benoît  |d 1977-  |e VerfasserIn  |0 (DE-588)1262911168  |0 (DE-627)1810822289  |4 aut 
245 1 4 |a The tensor Harish-Chandra-Itzykson-Zuber integral  |b I. Weingarten calculus and a generalization of monotone Hurwitz numbers  |c Benoît Collins, Razvan Gurau, Luca Lionni 
250 |a Version v2 
264 1 |c 25 Jan 2022 
300 |a 43 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Version 1 vom 26. Oktober 2020, Version 2 vom 25. Januar 2022 
500 |a Gesehen am 05.10.2022 
520 |a We study a generalization of the Harish-Chandra - Itzykson - Zuber integral to tensors and its expansion over trace-invariants of the two external tensors. This gives rise to natural generalizations of monotone double Hurwitz numbers, which count certain families of constellations. We find an expression of these numbers in terms of monotone simple Hurwitz numbers, thereby also providing expressions for monotone double Hurwitz numbers of arbitrary genus in terms of the single ones. We give an interpretation of the different combinatorial quantities at play in terms of enumeration of nodal surfaces. In particular, our generalization of Hurwitz numbers is shown to enumerate certain isomorphism classes of branched coverings of a bouquet of $D$ 2-spheres that touch at one common non-branch node. 
534 |c 2020 
650 4 |a Mathematical Physics 
650 4 |a Mathematics - Combinatorics 
700 1 |a Gurǎu, Rǎzvan  |d 1980-  |e VerfasserIn  |0 (DE-588)1125382333  |0 (DE-627)879905778  |0 (DE-576)483375152  |4 aut 
700 1 |a Lionni, Luca  |d 1990-  |e VerfasserIn  |0 (DE-588)1257277715  |0 (DE-627)180141114X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020), Artikel-ID 2010.13661, Seite 1-43  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The tensor Harish-Chandra-Itzykson-Zuber integral I. Weingarten calculus and a generalization of monotone Hurwitz numbers 
773 1 8 |g year:2020  |g elocationid:2010.13661  |g pages:1-43  |g extent:43  |a The tensor Harish-Chandra-Itzykson-Zuber integral I. Weingarten calculus and a generalization of monotone Hurwitz numbers 
856 4 0 |u http://arxiv.org/abs/2010.13661  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220527 
993 |a Article 
994 |a 2020 
998 |g 1257277715  |a Lionni, Luca  |m 1257277715:Lionni, Luca  |d 130000  |d 130300  |e 130000PL1257277715  |e 130300PL1257277715  |k 0/130000/  |k 1/130000/130300/  |p 3  |y j 
998 |g 1125382333  |a Gurǎu, Rǎzvan  |m 1125382333:Gurǎu, Rǎzvan  |d 700000  |d 728500  |e 700000PG1125382333  |e 728500PG1125382333  |k 0/700000/  |k 1/700000/728500/  |p 2 
999 |a KXP-PPN1804433136  |e 4139843586 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"43 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"pubHistory":["1991 -"],"part":{"extent":"43","text":"(2020), Artikel-ID 2010.13661, Seite 1-43","pages":"1-43","year":"2020"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"The tensor Harish-Chandra-Itzykson-Zuber integral I. Weingarten calculus and a generalization of monotone Hurwitz numbersArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"name":{"displayForm":["Benoît Collins, Razvan Gurau, Luca Lionni"]},"origin":[{"dateIssuedDisp":"25 Jan 2022","dateIssuedKey":"2022","edition":"Version v2"}],"id":{"eki":["1804433136"],"doi":["10.48550/arXiv.2010.13661"]},"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Version 1 vom 26. Oktober 2020, Version 2 vom 25. Januar 2022","Gesehen am 05.10.2022"],"language":["eng"],"recId":"1804433136","person":[{"family":"Collins","given":"Benoît","display":"Collins, Benoît","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Rǎzvan","family":"Gurǎu","role":"aut","display":"Gurǎu, Rǎzvan","roleDisplay":"VerfasserIn"},{"given":"Luca","family":"Lionni","role":"aut","display":"Lionni, Luca","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"tensor Harish-Chandra-Itzykson-Zuber integral","subtitle":"I. Weingarten calculus and a generalization of monotone Hurwitz numbers","title":"The tensor Harish-Chandra-Itzykson-Zuber integral"}]} 
SRT |a COLLINSBENTENSORHARI2520