On the generalization of the Wigner semicircle law to real symmetric tensors
We propose a simple generalization of the matrix resolvent to a resolvent for real symmetric tensors $T\in \otimes^p \mathbb{R}^N$ of order $p\ge 3$. The tensor resolvent yields an integral representation for a class of tensor invariants and its singular locus can be understood in terms of the real...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
14 Apr 2020
|
| Ausgabe: | Version v2 |
| In: |
Arxiv
Year: 2020, Pages: 1-39 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2004.02660 |
| Verfasserangaben: | Razvan Gurau |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1804434590 | ||
| 003 | DE-627 | ||
| 005 | 20221007075057.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220527s2020 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1804434590 | ||
| 035 | |a (DE-599)KXP1804434590 | ||
| 035 | |a (OCoLC)1341460262 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Gurǎu, Rǎzvan |d 1980- |e VerfasserIn |0 (DE-588)1125382333 |0 (DE-627)879905778 |0 (DE-576)483375152 |4 aut | |
| 245 | 1 | 0 | |a On the generalization of the Wigner semicircle law to real symmetric tensors |c Razvan Gurau |
| 250 | |a Version v2 | ||
| 264 | 1 | |c 14 Apr 2020 | |
| 300 | |a 39 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Version 1 vom 6. April 2020, Version 2 vom 14. April 2020 | ||
| 500 | |a Gesehen am 07.10.2022 | ||
| 520 | |a We propose a simple generalization of the matrix resolvent to a resolvent for real symmetric tensors $T\in \otimes^p \mathbb{R}^N$ of order $p\ge 3$. The tensor resolvent yields an integral representation for a class of tensor invariants and its singular locus can be understood in terms of the real eigenvalues of tensors. We then consider a random Gaussian (real symmetric) tensor. We show that in the large $N$ limit the expected resolvent has a finite cut in the complex plane and that the associated "spectral density", that is the discontinuity at the cut, obeys a universal law which generalizes the Wigner semicircle law to arbitrary order. Finally, we consider a spiked tensor for $p\ge 3$, that is the sum of a fixed tensor $b\,v^{\otimes p}$ with $v\in \mathbb{R}^N$ (the signal) and a random Gaussian tensor $T$ (the noise). We show that in the large $N$ limit the expected resolvent undergoes a sharp transition at some threshold value of the signal to noise ratio $b$ which we compute analytically. | ||
| 650 | 4 | |a 60B99 | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematical Physics | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020), Artikel-ID 2004.02660, Seite 1-39 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On the generalization of the Wigner semicircle law to real symmetric tensors |
| 773 | 1 | 8 | |g year:2020 |g elocationid:2004.02660 |g pages:1-39 |g extent:39 |a On the generalization of the Wigner semicircle law to real symmetric tensors |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2004.02660 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220527 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1125382333 |a Gurǎu, Rǎzvan |m 1125382333:Gurǎu, Rǎzvan |d 700000 |d 728500 |e 700000PG1125382333 |e 728500PG1125382333 |k 0/700000/ |k 1/700000/728500/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1804434590 |e 4139846240 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"39 S."}],"relHost":[{"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"recId":"509006531","language":["eng"],"note":["Gesehen am 28.05.2024"],"disp":"On the generalization of the Wigner semicircle law to real symmetric tensorsArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2020","pages":"1-39","text":"(2020), Artikel-ID 2004.02660, Seite 1-39","extent":"39"},"pubHistory":["1991 -"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Razvan Gurau"]},"origin":[{"dateIssuedDisp":"14 Apr 2020","dateIssuedKey":"2020","edition":"Version v2"}],"id":{"eki":["1804434590"]},"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Version 1 vom 6. April 2020, Version 2 vom 14. April 2020","Gesehen am 07.10.2022"],"recId":"1804434590","language":["eng"],"person":[{"role":"aut","display":"Gurǎu, Rǎzvan","roleDisplay":"VerfasserIn","given":"Rǎzvan","family":"Gurǎu"}],"title":[{"title":"On the generalization of the Wigner semicircle law to real symmetric tensors","title_sort":"On the generalization of the Wigner semicircle law to real symmetric tensors"}]} | ||
| SRT | |a GURAURAZVAONTHEGENER1420 | ||