On the generalization of the Wigner semicircle law to real symmetric tensors

We propose a simple generalization of the matrix resolvent to a resolvent for real symmetric tensors $T\in \otimes^p \mathbb{R}^N$ of order $p\ge 3$. The tensor resolvent yields an integral representation for a class of tensor invariants and its singular locus can be understood in terms of the real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 14 Apr 2020
Ausgabe:Version v2
In: Arxiv
Year: 2020, Pages: 1-39
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2004.02660
Volltext
Verfasserangaben:Razvan Gurau

MARC

LEADER 00000caa a2200000 c 4500
001 1804434590
003 DE-627
005 20221007075057.0
007 cr uuu---uuuuu
008 220527s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1804434590 
035 |a (DE-599)KXP1804434590 
035 |a (OCoLC)1341460262 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Gurǎu, Rǎzvan  |d 1980-  |e VerfasserIn  |0 (DE-588)1125382333  |0 (DE-627)879905778  |0 (DE-576)483375152  |4 aut 
245 1 0 |a On the generalization of the Wigner semicircle law to real symmetric tensors  |c Razvan Gurau 
250 |a Version v2 
264 1 |c 14 Apr 2020 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Version 1 vom 6. April 2020, Version 2 vom 14. April 2020 
500 |a Gesehen am 07.10.2022 
520 |a We propose a simple generalization of the matrix resolvent to a resolvent for real symmetric tensors $T\in \otimes^p \mathbb{R}^N$ of order $p\ge 3$. The tensor resolvent yields an integral representation for a class of tensor invariants and its singular locus can be understood in terms of the real eigenvalues of tensors. We then consider a random Gaussian (real symmetric) tensor. We show that in the large $N$ limit the expected resolvent has a finite cut in the complex plane and that the associated "spectral density", that is the discontinuity at the cut, obeys a universal law which generalizes the Wigner semicircle law to arbitrary order. Finally, we consider a spiked tensor for $p\ge 3$, that is the sum of a fixed tensor $b\,v^{\otimes p}$ with $v\in \mathbb{R}^N$ (the signal) and a random Gaussian tensor $T$ (the noise). We show that in the large $N$ limit the expected resolvent undergoes a sharp transition at some threshold value of the signal to noise ratio $b$ which we compute analytically. 
650 4 |a 60B99 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematical Physics 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020), Artikel-ID 2004.02660, Seite 1-39  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a On the generalization of the Wigner semicircle law to real symmetric tensors 
773 1 8 |g year:2020  |g elocationid:2004.02660  |g pages:1-39  |g extent:39  |a On the generalization of the Wigner semicircle law to real symmetric tensors 
856 4 0 |u http://arxiv.org/abs/2004.02660  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220527 
993 |a Article 
994 |a 2020 
998 |g 1125382333  |a Gurǎu, Rǎzvan  |m 1125382333:Gurǎu, Rǎzvan  |d 700000  |d 728500  |e 700000PG1125382333  |e 728500PG1125382333  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j  |y j 
999 |a KXP-PPN1804434590  |e 4139846240 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"39 S."}],"relHost":[{"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"recId":"509006531","language":["eng"],"note":["Gesehen am 28.05.2024"],"disp":"On the generalization of the Wigner semicircle law to real symmetric tensorsArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2020","pages":"1-39","text":"(2020), Artikel-ID 2004.02660, Seite 1-39","extent":"39"},"pubHistory":["1991 -"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Razvan Gurau"]},"origin":[{"dateIssuedDisp":"14 Apr 2020","dateIssuedKey":"2020","edition":"Version v2"}],"id":{"eki":["1804434590"]},"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Version 1 vom 6. April 2020, Version 2 vom 14. April 2020","Gesehen am 07.10.2022"],"recId":"1804434590","language":["eng"],"person":[{"role":"aut","display":"Gurǎu, Rǎzvan","roleDisplay":"VerfasserIn","given":"Rǎzvan","family":"Gurǎu"}],"title":[{"title":"On the generalization of the Wigner semicircle law to real symmetric tensors","title_sort":"On the generalization of the Wigner semicircle law to real symmetric tensors"}]} 
SRT |a GURAURAZVAONTHEGENER1420