Line of fixed points in a bosonic tensor model
We consider the $O(N)^3$ tensor model of Klebanov and Tarnopolsky \cite{Klebanov:2016xxf} in $d<4$ with a free covariance modified to fit the infrared conformal scaling. We study the renormalization group flow of the model using a Wilsonian approach valid in any $d$ (notably we do not require $d=...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
8 Mar 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-41 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1903.03578 |
| Verfasserangaben: | Dario Benedetti, Razvan Gurau, and Sabine Harribey |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1804440280 | ||
| 003 | DE-627 | ||
| 005 | 20220929103417.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220527s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.1903.03578 |2 doi | |
| 035 | |a (DE-627)1804440280 | ||
| 035 | |a (DE-599)KXP1804440280 | ||
| 035 | |a (OCoLC)1341460353 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Benedetti, Dario |e VerfasserIn |0 (DE-588)1195069391 |0 (DE-627)167724433X |4 aut | |
| 245 | 1 | 0 | |a Line of fixed points in a bosonic tensor model |c Dario Benedetti, Razvan Gurau, and Sabine Harribey |
| 264 | 1 | |c 8 Mar 2019 | |
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Identifizierung der Ressource nach: Last revised 7 Jun 2019 | ||
| 500 | |a Gesehen am 29.09.2022 | ||
| 520 | |a We consider the $O(N)^3$ tensor model of Klebanov and Tarnopolsky \cite{Klebanov:2016xxf} in $d<4$ with a free covariance modified to fit the infrared conformal scaling. We study the renormalization group flow of the model using a Wilsonian approach valid in any $d$ (notably we do not require $d=4-\epsilon$ with small $\epsilon$). At large $N$, the tetrahedral coupling has a finite flow, hence it becomes a free parameter. The remaining flow can be parameterized by two couplings which do not mix. We show that, at leading order in $1/N$ but non perturbatively in the couplings, the beta functions stop at quadratic order in the pillow and double-trace couplings. We find four fixed points which depend parametrically on the tetrahedral coupling. For purely imaginary values of the latter we identify a real and \emph{infrared attractive} fixed point. We remark that an imaginary tetrahedral coupling is in fact natural from the onset as the tetrahedral invariant does not have any positivity property, and moreover in the large-$N$ limit beta functions depend on the square of the tetrahedral coupling, thus they remain real, as long as the other couplings stay real. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematical Physics | |
| 700 | 1 | |a Gurǎu, Rǎzvan |d 1980- |e VerfasserIn |0 (DE-588)1125382333 |0 (DE-627)879905778 |0 (DE-576)483375152 |4 aut | |
| 700 | 1 | |a Harribey, Sabine |d 1995- |e VerfasserIn |0 (DE-588)1230883495 |0 (DE-627)1753224977 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1903.03578, Seite 1-41 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Line of fixed points in a bosonic tensor model |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1903.03578 |g pages:1-41 |g extent:41 |a Line of fixed points in a bosonic tensor model |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1903.03578 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220527 | ||
| 993 | |a Article | ||
| 998 | |g 1230883495 |a Harribey, Sabine |m 1230883495:Harribey, Sabine |d 130000 |e 130000PH1230883495 |k 0/130000/ |p 3 |y j | ||
| 998 | |g 1125382333 |a Gurǎu, Rǎzvan |m 1125382333:Gurǎu, Rǎzvan |p 2 | ||
| 999 | |a KXP-PPN1804440280 |e 4139858125 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Identifizierung der Ressource nach: Last revised 7 Jun 2019","Gesehen am 29.09.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"recId":"1804440280","person":[{"display":"Benedetti, Dario","roleDisplay":"VerfasserIn","role":"aut","family":"Benedetti","given":"Dario"},{"family":"Gurǎu","given":"Rǎzvan","roleDisplay":"VerfasserIn","display":"Gurǎu, Rǎzvan","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Harribey, Sabine","role":"aut","family":"Harribey","given":"Sabine"}],"title":[{"title":"Line of fixed points in a bosonic tensor model","title_sort":"Line of fixed points in a bosonic tensor model"}],"physDesc":[{"extent":"41 S."}],"relHost":[{"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"41","text":"(2019), Artikel-ID 1903.03578, Seite 1-41","pages":"1-41","year":"2019"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"Line of fixed points in a bosonic tensor modelArxiv","note":["Gesehen am 28.05.2024"]}],"name":{"displayForm":["Dario Benedetti, Razvan Gurau, and Sabine Harribey"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"8 Mar 2019"}],"id":{"eki":["1804440280"],"doi":["10.48550/arXiv.1903.03578"]}} | ||
| SRT | |a BENEDETTIDLINEOFFIXE8201 | ||