Line of fixed points in a bosonic tensor model

We consider the $O(N)^3$ tensor model of Klebanov and Tarnopolsky \cite{Klebanov:2016xxf} in $d<4$ with a free covariance modified to fit the infrared conformal scaling. We study the renormalization group flow of the model using a Wilsonian approach valid in any $d$ (notably we do not require $d=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benedetti, Dario (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn) , Harribey, Sabine (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 8 Mar 2019
In: Arxiv
Year: 2019, Pages: 1-41
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1903.03578
Volltext
Verfasserangaben:Dario Benedetti, Razvan Gurau, and Sabine Harribey

MARC

LEADER 00000caa a2200000 c 4500
001 1804440280
003 DE-627
005 20220929103417.0
007 cr uuu---uuuuu
008 220527s2019 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.1903.03578  |2 doi 
035 |a (DE-627)1804440280 
035 |a (DE-599)KXP1804440280 
035 |a (OCoLC)1341460353 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Benedetti, Dario  |e VerfasserIn  |0 (DE-588)1195069391  |0 (DE-627)167724433X  |4 aut 
245 1 0 |a Line of fixed points in a bosonic tensor model  |c Dario Benedetti, Razvan Gurau, and Sabine Harribey 
264 1 |c 8 Mar 2019 
300 |a 41 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Identifizierung der Ressource nach: Last revised 7 Jun 2019 
500 |a Gesehen am 29.09.2022 
520 |a We consider the $O(N)^3$ tensor model of Klebanov and Tarnopolsky \cite{Klebanov:2016xxf} in $d<4$ with a free covariance modified to fit the infrared conformal scaling. We study the renormalization group flow of the model using a Wilsonian approach valid in any $d$ (notably we do not require $d=4-\epsilon$ with small $\epsilon$). At large $N$, the tetrahedral coupling has a finite flow, hence it becomes a free parameter. The remaining flow can be parameterized by two couplings which do not mix. We show that, at leading order in $1/N$ but non perturbatively in the couplings, the beta functions stop at quadratic order in the pillow and double-trace couplings. We find four fixed points which depend parametrically on the tetrahedral coupling. For purely imaginary values of the latter we identify a real and \emph{infrared attractive} fixed point. We remark that an imaginary tetrahedral coupling is in fact natural from the onset as the tetrahedral invariant does not have any positivity property, and moreover in the large-$N$ limit beta functions depend on the square of the tetrahedral coupling, thus they remain real, as long as the other couplings stay real. 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematical Physics 
700 1 |a Gurǎu, Rǎzvan  |d 1980-  |e VerfasserIn  |0 (DE-588)1125382333  |0 (DE-627)879905778  |0 (DE-576)483375152  |4 aut 
700 1 |a Harribey, Sabine  |d 1995-  |e VerfasserIn  |0 (DE-588)1230883495  |0 (DE-627)1753224977  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1903.03578, Seite 1-41  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Line of fixed points in a bosonic tensor model 
773 1 8 |g year:2019  |g elocationid:1903.03578  |g pages:1-41  |g extent:41  |a Line of fixed points in a bosonic tensor model 
856 4 0 |u http://arxiv.org/abs/1903.03578  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220527 
993 |a Article 
998 |g 1230883495  |a Harribey, Sabine  |m 1230883495:Harribey, Sabine  |d 130000  |e 130000PH1230883495  |k 0/130000/  |p 3  |y j 
998 |g 1125382333  |a Gurǎu, Rǎzvan  |m 1125382333:Gurǎu, Rǎzvan  |p 2 
999 |a KXP-PPN1804440280  |e 4139858125 
BIB |a Y 
JSO |a {"note":["Identifizierung der Ressource nach: Last revised 7 Jun 2019","Gesehen am 29.09.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"recId":"1804440280","person":[{"display":"Benedetti, Dario","roleDisplay":"VerfasserIn","role":"aut","family":"Benedetti","given":"Dario"},{"family":"Gurǎu","given":"Rǎzvan","roleDisplay":"VerfasserIn","display":"Gurǎu, Rǎzvan","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Harribey, Sabine","role":"aut","family":"Harribey","given":"Sabine"}],"title":[{"title":"Line of fixed points in a bosonic tensor model","title_sort":"Line of fixed points in a bosonic tensor model"}],"physDesc":[{"extent":"41 S."}],"relHost":[{"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"41","text":"(2019), Artikel-ID 1903.03578, Seite 1-41","pages":"1-41","year":"2019"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"Line of fixed points in a bosonic tensor modelArxiv","note":["Gesehen am 28.05.2024"]}],"name":{"displayForm":["Dario Benedetti, Razvan Gurau, and Sabine Harribey"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"8 Mar 2019"}],"id":{"eki":["1804440280"],"doi":["10.48550/arXiv.1903.03578"]}} 
SRT |a BENEDETTIDLINEOFFIXE8201