Phase transition in tensor models

Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a 1/N expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Delepouve, Thibault (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 25, 2015
In: Journal of high energy physics
Year: 2015, Heft: 6, Pages: 1-34
ISSN:1029-8479
DOI:10.1007/JHEP06(2015)178
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/JHEP06(2015)178
Volltext
Verfasserangaben:Thibault Delepouve and Razvan Gurau
Beschreibung
Zusammenfassung:Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a 1/N expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in 1/N (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.
Beschreibung:Gesehen am 05.10.2022
Beschreibung:Online Resource
ISSN:1029-8479
DOI:10.1007/JHEP06(2015)178