Weighting bubbles in group field theory

Group field theories (GFT) are higher dimensional generalizations of matrix models whose Feynman diagrams are dual to triangulations. Here we propose a modification of GFT models that includes extra field indices keeping track of the bubbles of the graphs in the Feynman evaluations. In dimension thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baratin, Aristide (VerfasserIn) , Freidel, Laurent (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 July 2014
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2014, Jahrgang: 90, Heft: 2, Pages: 1-12
ISSN:1550-2368
DOI:10.1103/PhysRevD.90.024069
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.90.024069
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.90.024069
Volltext
Verfasserangaben:Aristide Baratin, Laurent Freidel and Razvan Gurau
Beschreibung
Zusammenfassung:Group field theories (GFT) are higher dimensional generalizations of matrix models whose Feynman diagrams are dual to triangulations. Here we propose a modification of GFT models that includes extra field indices keeping track of the bubbles of the graphs in the Feynman evaluations. In dimension three, our model exhibits new symmetries, interpreted as the action of the vertex translations of the triangulation. The extra field indices have an elegant algebraic interpretation: they encode the structure of a semisimple algebra. Remarkably, when the algebra is chosen to be associative, the new structure contributes a topological invariant from each bubble of the graph to the Feynman amplitudes.
Beschreibung:Gesehen am 05.10.2022
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.90.024069