Unsupervised segmentation in NSCLC: how to map the output of unsupervised segmentation to meaningful histological labels by linear combination?

Background: Segmentation is, in many Pathomics projects, an initial step. Usually, in supervised settings, well-annotated and large datasets are required. Regarding the rarity of such datasets, unsupervised learning concepts appear to be a potential solution. Against this background, we tested for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weis, Cleo-Aron Thias (VerfasserIn) , Weihrauch, Kian R. (VerfasserIn) , Kriegsmann, Katharina (VerfasserIn) , Kriegsmann, Mark (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 April 2022
In: Applied Sciences
Year: 2022, Jahrgang: 12, Heft: 8, Pages: 1-18
ISSN:2076-3417
DOI:10.3390/app12083718
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/app12083718
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2076-3417/12/8/3718
Volltext
Verfasserangaben:Cleo-Aron Weis, Kian R. Weihrauch, Katharina Kriegsmann and Mark Kriegsmann

MARC

LEADER 00000caa a2200000 c 4500
001 1805154044
003 DE-627
005 20220820192339.0
007 cr uuu---uuuuu
008 220530s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/app12083718  |2 doi 
035 |a (DE-627)1805154044 
035 |a (DE-599)KXP1805154044 
035 |a (OCoLC)1341460600 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Weis, Cleo-Aron Thias  |d 1985-  |e VerfasserIn  |0 (DE-588)1062803752  |0 (DE-627)806961198  |0 (DE-576)42022730X  |4 aut 
245 1 0 |a Unsupervised segmentation in NSCLC  |b how to map the output of unsupervised segmentation to meaningful histological labels by linear combination?  |c Cleo-Aron Weis, Kian R. Weihrauch, Katharina Kriegsmann and Mark Kriegsmann 
246 3 0 |a Artificial intelligence applied to medical imaging and computational biology 
264 1 |c 7 April 2022 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a This article belongs to the Special issue "Artificial Intelligence Applied to Medical Imaging and Computational Biology" 
500 |a Gesehen am 30.05.2022 
520 |a Background: Segmentation is, in many Pathomics projects, an initial step. Usually, in supervised settings, well-annotated and large datasets are required. Regarding the rarity of such datasets, unsupervised learning concepts appear to be a potential solution. Against this background, we tested for a small dataset on lung cancer tissue microarrays (TMA) if a model (i) first can be in a previously published unsupervised setting and (ii) secondly can be modified and retrained to produce meaningful labels, and (iii) we finally compared this approach to standard segmentation models. Methods: (ad i) First, a convolutional neuronal network (CNN) segmentation model is trained in an unsupervised fashion, as recently described by Kanezaki et al. (ad ii) Second, the model is modified by adding a remapping block and is retrained on an annotated dataset in a supervised setting. (ad iii) Third, the segmentation results are compared to standard segmentation models trained on the same dataset. Results: (ad i-ii) By adding an additional mapping-block layer and by retraining, models previously trained in an unsupervised manner can produce meaningful labels. (ad iii) The segmentation quality is inferior to standard segmentation models trained on the same dataset. Conclusions: Unsupervised training in combination with subsequent supervised training offers for histological images here no benefit. 
650 4 |a histopathology 
650 4 |a lung cancer 
650 4 |a supervised segmentation 
650 4 |a unsupervised segmentation 
700 1 |a Weihrauch, Kian R.  |e VerfasserIn  |4 aut 
700 1 |a Kriegsmann, Katharina  |d 1986-  |e VerfasserIn  |0 (DE-588)1049422449  |0 (DE-627)781924006  |0 (DE-576)40339774X  |4 aut 
700 1 |a Kriegsmann, Mark  |d 1987-  |e VerfasserIn  |0 (DE-588)103740324X  |0 (DE-627)755668782  |0 (DE-576)39141870X  |4 aut 
773 0 8 |i Enthalten in  |t Applied Sciences  |d Basel : MDPI, 2011  |g 12(2022), 8, Special issue, Artikel-ID 3718, Seite 1-18  |h Online-Ressource  |w (DE-627)737287640  |w (DE-600)2704225-X  |w (DE-576)379466716  |x 2076-3417  |7 nnas  |a Unsupervised segmentation in NSCLC how to map the output of unsupervised segmentation to meaningful histological labels by linear combination? 
773 1 8 |g volume:12  |g year:2022  |g number:8  |g month:4-  |g supplement:Special issue  |g elocationid:3718  |g pages:1-18  |g extent:18  |a Unsupervised segmentation in NSCLC how to map the output of unsupervised segmentation to meaningful histological labels by linear combination? 
856 4 0 |u https://doi.org/10.3390/app12083718  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2076-3417/12/8/3718  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220530 
993 |a Article 
994 |a 2022 
998 |g 103740324X  |a Kriegsmann, Mark  |m 103740324X:Kriegsmann, Mark  |d 910000  |d 912000  |d 50000  |e 910000PK103740324X  |e 912000PK103740324X  |e 50000PK103740324X  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 4  |y j 
998 |g 1049422449  |a Kriegsmann, Katharina  |m 1049422449:Kriegsmann, Katharina  |d 910000  |d 910100  |e 910000PK1049422449  |e 910100PK1049422449  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1062803752  |a Weis, Cleo-Aron Thias  |m 1062803752:Weis, Cleo-Aron Thias  |d 60000  |d 63400  |e 60000PW1062803752  |e 63400PW1062803752  |k 0/60000/  |k 1/60000/63400/  |p 1  |x j 
999 |a KXP-PPN1805154044  |e 4141341703 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.3390/app12083718"],"eki":["1805154044"]},"relHost":[{"id":{"eki":["737287640"],"issn":["2076-3417"],"zdb":["2704225-X"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.2011 -"],"recId":"737287640","origin":[{"dateIssuedKey":"2011","publisher":"MDPI","dateIssuedDisp":"2011-","publisherPlace":"Basel"}],"note":["Gesehen am 19.02.13"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Applied Sciences","title_sort":"Applied Sciences","subtitle":"open access journal"}],"part":{"volume":"12","extent":"18","text":"12(2022), 8, Special issue, Artikel-ID 3718, Seite 1-18","pages":"1-18","year":"2022","issue":"8"},"language":["eng"],"disp":"Unsupervised segmentation in NSCLC how to map the output of unsupervised segmentation to meaningful histological labels by linear combination?Applied Sciences"}],"physDesc":[{"extent":"18 S."}],"name":{"displayForm":["Cleo-Aron Weis, Kian R. Weihrauch, Katharina Kriegsmann and Mark Kriegsmann"]},"recId":"1805154044","origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"7 April 2022"}],"note":["This article belongs to the Special issue \"Artificial Intelligence Applied to Medical Imaging and Computational Biology\"","Gesehen am 30.05.2022"],"title":[{"title":"Unsupervised segmentation in NSCLC","title_sort":"Unsupervised segmentation in NSCLC","subtitle":"how to map the output of unsupervised segmentation to meaningful histological labels by linear combination?"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"person":[{"family":"Weis","display":"Weis, Cleo-Aron Thias","given":"Cleo-Aron Thias","role":"aut"},{"display":"Weihrauch, Kian R.","family":"Weihrauch","role":"aut","given":"Kian R."},{"role":"aut","given":"Katharina","display":"Kriegsmann, Katharina","family":"Kriegsmann"},{"role":"aut","given":"Mark","display":"Kriegsmann, Mark","family":"Kriegsmann"}]} 
SRT |a WEISCLEOARUNSUPERVIS7202