Regular colored graphs of positive degree

Regular colored graphs are dual representations of pure colored D-dimensional complexes. These graphs can be classified with respect to an integer, their degree, much like maps are characterized by the genus. We analyse the structure of regular colored graphs of fixed positive degree and perform the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gurǎu, Rǎzvan (VerfasserIn) , Schaeffer, Gilles (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 1 Feb 2016
Ausgabe:Version v3
In: Arxiv
Year: 2013, Pages: 1-45
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1307.5279
Volltext
Verfasserangaben:Razvan Gurau and Gilles Schaeffer
Beschreibung
Zusammenfassung:Regular colored graphs are dual representations of pure colored D-dimensional complexes. These graphs can be classified with respect to an integer, their degree, much like maps are characterized by the genus. We analyse the structure of regular colored graphs of fixed positive degree and perform their exact and asymptotic enumeration. In particular we show that the generating function of the family of graphs of fixed degree is an algebraic series with a positive radius of convergence, independant of the degree. We describe the singular behavior of this series near its dominant singularity, and use the results to establish the double scaling limit of colored tensor models.
Beschreibung:Version 1 vom 19. Juli 2013, Version 3 vom 1. Februar 2016
Gesehen am 05.10.2022
Beschreibung:Online Resource