Random tensor models in the large N limit: uncoloring the colored tensor models

Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in arbitrary dimensions. Colored tensor models have been shown to admit a 1/N expansion and a continuum limit accessible analytically. In this paper we prove that these results extend to the most general t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonzom, Valentin (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn) , Rivasseau, Vincent (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 April 2012
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2012, Jahrgang: 85, Heft: 8, Pages: 1-12
ISSN:1550-2368
DOI:10.1103/PhysRevD.85.084037
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.85.084037
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.85.084037
Volltext
Verfasserangaben:Valentin Bonzom, Razvan Gurau and Vincent Rivasseau
Beschreibung
Zusammenfassung:Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in arbitrary dimensions. Colored tensor models have been shown to admit a 1/N expansion and a continuum limit accessible analytically. In this paper we prove that these results extend to the most general tensor model for a single generic, i.e. nonsymmetric, complex tensor. Colors appear in this setting as a canonical bookkeeping device and not as a fundamental feature. In the large N limit, we exhibit a set of Virasoro constraints satisfied by the free energy and an infinite family of multicritical behaviors with entropy exponents γm=1−1/m.
Beschreibung:Gesehen am 05.10.2022
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.85.084037