Asymptotes in SU(2) recoupling theory: Wigner matrices, 3j symbols, and character localization

In this paper, we employ a technique combining the Euler Maclaurin formula with the saddle point approximation method to obtain the asymptotic behavior (in the limit of large representation index J) of generic Wigner matrix elements $${D^{J}_{MM'}(g)}$$. We use this result to derive asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ben Geloun, Joseph (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 19, 2011
In: Annales Henri Poincaré
Year: 2011, Jahrgang: 12, Heft: 1, Pages: 77-118
ISSN:1424-0661
DOI:10.1007/s00023-010-0072-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00023-010-0072-1
Volltext
Verfasserangaben:Joseph Ben Geloun and Razvan Gurau
Beschreibung
Zusammenfassung:In this paper, we employ a technique combining the Euler Maclaurin formula with the saddle point approximation method to obtain the asymptotic behavior (in the limit of large representation index J) of generic Wigner matrix elements $${D^{J}_{MM'}(g)}$$. We use this result to derive asymptotic formulae for the character χJ(g) of an SU(2) group element and for Wigner’s 3j symbol. Surprisingly, given that we perform five successive layers of approximations, the asymptotic formula we obtain for χJ(g) is in fact exact. The result hints at a “Duistermaat-Heckman like” localization property for discrete sums.
Beschreibung:Gesehen am 28.09.2022
Beschreibung:Online Resource
ISSN:1424-0661
DOI:10.1007/s00023-010-0072-1