Topological graph polynomials in colored Group Field Theory
In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph $${\mathcal{G}_{\partial}}$$of an open graph $${\mathcal{G}}$$and prove it is a cellular complex. Using this st...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
June 8, 2010
|
| In: |
Annales Henri Poincaré
Year: 2010, Volume: 11, Issue: 4, Pages: 565-584 |
| ISSN: | 1424-0661 |
| DOI: | 10.1007/s00023-010-0035-6 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00023-010-0035-6 |
| Author Notes: | Razvan Gurau |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 180531579X | ||
| 003 | DE-627 | ||
| 005 | 20220930091743.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220531s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00023-010-0035-6 |2 doi | |
| 035 | |a (DE-627)180531579X | ||
| 035 | |a (DE-599)KXP180531579X | ||
| 035 | |a (OCoLC)1341460735 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Gurǎu, Rǎzvan |d 1980- |e VerfasserIn |0 (DE-588)1125382333 |0 (DE-627)879905778 |0 (DE-576)483375152 |4 aut | |
| 245 | 1 | 0 | |a Topological graph polynomials in colored Group Field Theory |c Razvan Gurau |
| 264 | 1 | |c June 8, 2010 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.09.2022 | ||
| 520 | |a In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph $${\mathcal{G}_{\partial}}$$of an open graph $${\mathcal{G}}$$and prove it is a cellular complex. Using this structure we generalize the topological (Bollobás-Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension. | ||
| 650 | 4 | |a Active Line | |
| 650 | 4 | |a Chord Diagram | |
| 650 | 4 | |a Half Line | |
| 650 | 4 | |a Ribbon Graph | |
| 650 | 4 | |a Tutte Polynomial | |
| 773 | 0 | 8 | |i Enthalten in |a Institut Henri Poincaré |t Annales Henri Poincaré |d Cham (ZG) : Springer International Publishing AG, 2000 |g 11(2010), 4, Seite 565-584 |h Online-Ressource |w (DE-627)31862012X |w (DE-600)2019605-2 |w (DE-576)091020670 |x 1424-0661 |7 nnas |
| 773 | 1 | 8 | |g volume:11 |g year:2010 |g number:4 |g pages:565-584 |g extent:20 |a Topological graph polynomials in colored Group Field Theory |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00023-010-0035-6 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220531 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 1125382333 |a Gurǎu, Rǎzvan |m 1125382333:Gurǎu, Rǎzvan |p 1 |x j |y j | ||
| 999 | |a KXP-PPN180531579X |e 4141680958 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Razvan Gurau"]},"origin":[{"dateIssuedDisp":"June 8, 2010","dateIssuedKey":"2010"}],"id":{"eki":["180531579X"],"doi":["10.1007/s00023-010-0035-6"]},"physDesc":[{"extent":"20 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2000-","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG","dateIssuedKey":"2000","publisherPlace":"Cham (ZG) ; Basel ; Berlin [u.a.] ; Basel"}],"id":{"eki":["31862012X"],"zdb":["2019605-2"],"issn":["1424-0661"]},"note":["Gesehen am 25.10.04"],"disp":"Institut Henri PoincaréAnnales Henri Poincaré","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Institut Henri Poincaré"}],"language":["eng"],"recId":"31862012X","pubHistory":["1.2000 -"],"part":{"issue":"4","pages":"565-584","year":"2010","extent":"20","text":"11(2010), 4, Seite 565-584","volume":"11"},"title":[{"title_sort":"Annales Henri Poincaré","subtitle":"a journal of theoretical and mathematical physics","title":"Annales Henri Poincaré"}]}],"person":[{"roleDisplay":"VerfasserIn","display":"Gurǎu, Rǎzvan","role":"aut","family":"Gurǎu","given":"Rǎzvan"}],"title":[{"title_sort":"Topological graph polynomials in colored Group Field Theory","title":"Topological graph polynomials in colored Group Field Theory"}],"note":["Gesehen am 30.09.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"180531579X","language":["eng"]} | ||
| SRT | |a GURAURAZVATOPOLOGICA8201 | ||