A local Wheeler-DeWitt measure for the string landscape

According to the `Cosmological Central Dogma', de Sitter space can be viewed as a quantum mechanical system with a finite number of degrees of freedom, set by the horizon area. We use this assumption together with the Wheeler-DeWitt (WDW) equation to approach the measure problem of eternal infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Friedrich, Bjoern (VerfasserIn) , Hebecker, Arthur (VerfasserIn) , Salmhofer, Manfred (VerfasserIn) , Strauß, Jonah Cedric (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 19 May 2022
In: Arxiv
Year: 2022, Pages: 1-41
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2205.09772
Volltext
Verfasserangaben:Bjoern Friedrich, Arthur Hebecker, Manfred Salmhofer, Jonah Cedric Strauss, Johannes Walcher
Beschreibung
Zusammenfassung:According to the `Cosmological Central Dogma', de Sitter space can be viewed as a quantum mechanical system with a finite number of degrees of freedom, set by the horizon area. We use this assumption together with the Wheeler-DeWitt (WDW) equation to approach the measure problem of eternal inflation. Thus, our goal is to find a time-independent wave function of the universe on a total Hilbert space defined as the direct sum of a variety of subspaces: A finite-dimensional subspace for each de Sitter vacuum and an infinite-dimensional subspace for each terminal Minkowski or AdS vaccuum. We argue that, to be consistent with semiclassical intuition, such a solution requires the presence of sources. These are implemented as an inhomogenous term in the WDW equation, induced by the Hartle-Hawking no-boundary or the Linde/Vilenkin tunneling proposal. Taken together, these steps unambiguously lead to what we would like to think of as a `Local WDW measure,' where `local' refers to the fact that the dS part of the resulting wave function describes a superposition of static patches. The global 3-sphere spatial section of the entire multiverse makes no appearance.
Beschreibung:Gesehen am 01.06.2022
Beschreibung:Online Resource