Delta hedging of derivatives using deep reinforcement learning

Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Giurca, Alexandru (VerfasserIn) , Borovkova, Svetlana (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: [S.l.] SSRN [2021]
DOI:10.2139/ssrn.3847272
Online-Zugang:Verlag, kostenfrei: https://ssrn.com/abstract=3847272
Resolving-System, kostenfrei: https://doi.org/10.2139/ssrn.3847272
Volltext
Verfasserangaben:Alexandru Giurca, Svetlana Borovkova

MARC

LEADER 00000cam a22000002c 4500
001 180622402X
003 DE-627
005 20251013200109.0
007 cr uuu---uuuuu
008 220608s2021 xx |||||o 00| ||eng c
024 7 |a 10.2139/ssrn.3847272  |2 doi 
035 |a (DE-627)180622402X 
035 |a (DE-599)KEP078380014 
035 |a (ELVSSRN)3847272 
035 |a (DE-627-1)078380014 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
084 |a C15  |2 jelc 
084 |a C45  |2 jelc 
084 |a C63  |2 jelc 
084 |a G12  |2 jelc 
100 1 |a Giurca, Alexandru  |d 1987-  |e VerfasserIn  |0 (DE-588)1081452811  |0 (DE-627)846118734  |0 (DE-576)45441868X  |4 aut 
245 1 0 |a Delta hedging of derivatives using deep reinforcement learning  |c Alexandru Giurca, Svetlana Borovkova 
264 1 |a [S.l.]  |b SSRN  |c [2021] 
300 |a 1 Online-Ressource (86 p.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 3, 2021 erstellt 
506 0 |a Open Access  |e Controlled Vocabulary for Access Rights  |u http://purl.org/coar/access_right/c_abf2  |f unrestricted online access 
520 |a Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data 
700 1 |a Borovkova, Svetlana  |e VerfasserIn  |4 aut 
856 4 0 |u https://ssrn.com/abstract=3847272  |m X:ELVSSRN  |x Verlag  |z kostenfrei 
856 4 0 |u https://doi.org/10.2139/ssrn.3847272  |m X:ELVSSRN  |x Resolving-System  |z kostenfrei 
912 |a ZDB-33-SFEN 
912 |a ZDB-33-ERN 
912 |a ZDB-33-FRN 
951 |a BO 
992 |a 20220720 
993 |a Book 
994 |a 2021 
998 |g 1081452811  |a Giurca, Alexandru  |m 1081452811:Giurca, Alexandru  |d 700000  |d 729400  |e 700000PG1081452811  |e 729400PG1081452811  |k 0/700000/  |k 1/700000/729400/  |p 1  |x j 
999 |a KXP-PPN180622402X  |e 4171221285 
BIB |a Y 
JSO |a {"recId":"180622402X","person":[{"given":"Alexandru","display":"Giurca, Alexandru","family":"Giurca","role":"aut"},{"family":"Borovkova","role":"aut","given":"Svetlana","display":"Borovkova, Svetlana"}],"note":["Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 3, 2021 erstellt"],"language":["eng"],"name":{"displayForm":["Alexandru Giurca, Svetlana Borovkova"]},"origin":[{"dateIssuedKey":"2021","publisherPlace":"[S.l.]","publisher":"SSRN","dateIssuedDisp":"[2021]"}],"title":[{"title":"Delta hedging of derivatives using deep reinforcement learning","title_sort":"Delta hedging of derivatives using deep reinforcement learning"}],"type":{"media":"Online-Ressource","bibl":"book"},"physDesc":[{"extent":"1 Online-Ressource (86 p.)"}],"id":{"doi":["10.2139/ssrn.3847272"],"eki":["180622402X"]}} 
SRT |a GIURCAALEXDELTAHEDGI2021