Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy

Artificial intelligence (AI) is widely used to analyze gastrointestinal (GI) endoscopy image data. AI has led to several clinically approved algorithms for polyp detection, but application of AI beyond this specific task is limited by the high cost of manual annotations. Here, we show that a weakly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bündgens, Lukas (VerfasserIn) , Cifci, Didem (VerfasserIn) , Ghaffari Laleh, Narmin (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Koenen, Maria T. (VerfasserIn) , Zimmermann, Henning W. (VerfasserIn) , Herbold, Till (VerfasserIn) , Lux, Thomas Joachim (VerfasserIn) , Hann, Alexander (VerfasserIn) , Trautwein, Christian (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 March 2022
In: Scientific reports
Year: 2022, Jahrgang: 12, Pages: 1-13
ISSN:2045-2322
DOI:10.1038/s41598-022-08773-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41598-022-08773-1
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41598-022-08773-1
Volltext
Verfasserangaben:Lukas Buendgens, Didem Cifci, Narmin Ghaffari Laleh, Marko van Treeck, Maria T. Koenen, Henning W. Zimmermann, Till Herbold, Thomas Joachim Lux, Alexander Hann, Christian Trautwein & Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1806821001
003 DE-627
005 20241128091619.0
007 cr uuu---uuuuu
008 220612s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-022-08773-1  |2 doi 
035 |a (DE-627)1806821001 
035 |a (DE-599)KXP1806821001 
035 |a (OCoLC)1341461259 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bündgens, Lukas  |d 1988-  |e VerfasserIn  |0 (DE-588)1050671007  |0 (DE-627)784614490  |0 (DE-576)40491537X  |4 aut 
245 1 0 |a Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy  |c Lukas Buendgens, Didem Cifci, Narmin Ghaffari Laleh, Marko van Treeck, Maria T. Koenen, Henning W. Zimmermann, Till Herbold, Thomas Joachim Lux, Alexander Hann, Christian Trautwein & Jakob Nikolas Kather 
264 1 |c 22 March 2022 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.06.2022 
520 |a Artificial intelligence (AI) is widely used to analyze gastrointestinal (GI) endoscopy image data. AI has led to several clinically approved algorithms for polyp detection, but application of AI beyond this specific task is limited by the high cost of manual annotations. Here, we show that a weakly supervised AI can be trained on data from a clinical routine database to learn visual patterns of GI diseases without any manual labeling or annotation. We trained a deep neural network on a dataset of N = 29,506 gastroscopy and N = 18,942 colonoscopy examinations from a large endoscopy unit serving patients in Germany, the Netherlands and Belgium, using only routine diagnosis data for the 42 most common diseases. Despite a high data heterogeneity, the AI system reached a high performance for diagnosis of multiple diseases, including inflammatory, degenerative, infectious and neoplastic diseases. Specifically, a cross-validated area under the receiver operating curve (AUROC) of above 0.70 was reached for 13 diseases, and an AUROC of above 0.80 was reached for two diseases in the primary data set. In an external validation set including six disease categories, the AI system was able to significantly predict the presence of diverticulosis, candidiasis, colon and rectal cancer with AUROCs above 0.76. Reverse engineering the predictions demonstrated that plausible patterns were learned on the level of images and within images and potential confounders were identified. In summary, our study demonstrates the potential of weakly supervised AI to generate high-performing classifiers and identify clinically relevant visual patterns based on non-annotated routine image data in GI endoscopy and potentially other clinical imaging modalities. 
650 4 |a Colonoscopy 
650 4 |a Diagnostic markers 
650 4 |a Image processing 
650 4 |a Machine learning 
650 4 |a Oesophagogastroscopy 
700 1 |a Cifci, Didem  |e VerfasserIn  |4 aut 
700 1 |a Ghaffari Laleh, Narmin  |e VerfasserIn  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Koenen, Maria T.  |e VerfasserIn  |4 aut 
700 1 |a Zimmermann, Henning W.  |e VerfasserIn  |4 aut 
700 1 |a Herbold, Till  |e VerfasserIn  |4 aut 
700 1 |a Lux, Thomas Joachim  |d 1994-  |e VerfasserIn  |0 (DE-588)1254195270  |0 (DE-627)1796820717  |4 aut 
700 1 |a Hann, Alexander  |e VerfasserIn  |4 aut 
700 1 |a Trautwein, Christian  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 12(2022), Artikel-ID 4829, Seite 1-13  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy 
773 1 8 |g volume:12  |g year:2022  |g elocationid:4829  |g pages:1-13  |g extent:13  |a Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy 
856 4 0 |u https://doi.org/10.1038/s41598-022-08773-1  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-022-08773-1  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220612 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11  |y j 
999 |a KXP-PPN1806821001  |e 4148283989 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"22 March 2022"}],"relHost":[{"recId":"663366712","physDesc":[{"extent":"Online-Ressource"}],"disp":"Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopyScientific reports","pubHistory":["1, article number 1 (2011)-"],"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","publisherPlace":"[London] ; London","dateIssuedKey":"2011","dateIssuedDisp":"2011-"}],"title":[{"title":"Scientific reports","title_sort":"Scientific reports"}],"part":{"volume":"12","text":"12(2022), Artikel-ID 4829, Seite 1-13","extent":"13","pages":"1-13","year":"2022"},"id":{"eki":["663366712"],"issn":["2045-2322"],"zdb":["2615211-3"]},"note":["Gesehen am 12.07.24"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"person":[{"display":"Bündgens, Lukas","family":"Bündgens","role":"aut","given":"Lukas"},{"display":"Cifci, Didem","family":"Cifci","role":"aut","given":"Didem"},{"role":"aut","given":"Narmin","family":"Ghaffari Laleh","display":"Ghaffari Laleh, Narmin"},{"display":"van Treeck, Marko","family":"van Treeck","given":"Marko","role":"aut"},{"display":"Koenen, Maria T.","role":"aut","given":"Maria T.","family":"Koenen"},{"display":"Zimmermann, Henning W.","role":"aut","given":"Henning W.","family":"Zimmermann"},{"family":"Herbold","given":"Till","role":"aut","display":"Herbold, Till"},{"display":"Lux, Thomas Joachim","given":"Thomas Joachim","role":"aut","family":"Lux"},{"family":"Hann","role":"aut","given":"Alexander","display":"Hann, Alexander"},{"family":"Trautwein","given":"Christian","role":"aut","display":"Trautwein, Christian"},{"display":"Kather, Jakob Nikolas","given":"Jakob Nikolas","role":"aut","family":"Kather"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 12.06.2022"],"title":[{"title_sort":"Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy","title":"Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy"}],"physDesc":[{"extent":"13 S."}],"recId":"1806821001","name":{"displayForm":["Lukas Buendgens, Didem Cifci, Narmin Ghaffari Laleh, Marko van Treeck, Maria T. Koenen, Henning W. Zimmermann, Till Herbold, Thomas Joachim Lux, Alexander Hann, Christian Trautwein & Jakob Nikolas Kather"]},"id":{"eki":["1806821001"],"doi":["10.1038/s41598-022-08773-1"]}} 
SRT |a BUENDGENSLWEAKLYSUPE2220