Posterior temperature optimized Bayesian models for inverse problems in medical imaging

We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laves, Max-Heinrich (VerfasserIn) , Tölle, Malte (VerfasserIn) , Schlaefer, Alexander (VerfasserIn) , Engelhardt, Sandy (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2022
In: Medical image analysis
Year: 2022, Jahrgang: 78, Pages: 1-12
ISSN:1361-8423
DOI:10.1016/j.media.2022.102382
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2022.102382
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1361841522000342
Volltext
Verfasserangaben:Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt

MARC

LEADER 00000caa a2200000 c 4500
001 1806875764
003 DE-627
005 20230427160805.0
007 cr uuu---uuuuu
008 220613s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2022.102382  |2 doi 
035 |a (DE-627)1806875764 
035 |a (DE-599)KXP1806875764 
035 |a (OCoLC)1341461332 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Laves, Max-Heinrich  |d 1988-  |e VerfasserIn  |0 (DE-588)1239905637  |0 (DE-627)1767966962  |4 aut 
245 1 0 |a Posterior temperature optimized Bayesian models for inverse problems in medical imaging  |c Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt 
264 1 |c May 2022 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 11 February 2022 
500 |a Gesehen am 13.06.2022 
520 |a We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising. A suitable prior distribution introduces regularization, which is needed to solve the ill-posed problem and reduces overfitting the data. In practice, however, this often results in a suboptimal posterior temperature, and the full potential of the Bayesian approach is not being exploited. In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression. Our method is extensively evaluated on four different inverse tasks on a variety of modalities with images from public data sets and we demonstrate that an optimized posterior temperature outperforms both non-Bayesian and Bayesian approaches without temperature optimization. The use of an optimized prior distribution and posterior temperature leads to improved accuracy and uncertainty estimation and we show that it is sufficient to find these hyperparameters per task domain. Well-tempered posteriors yield calibrated uncertainty, which increases the reliability in the predictions. Our source code is publicly available at github.com/Cardio-AI/mfvi-dip-mia. 
650 4 |a Deep learning 
650 4 |a Hallucination 
650 4 |a Variational inference 
700 1 |a Tölle, Malte  |e VerfasserIn  |0 (DE-588)1259770931  |0 (DE-627)180687444X  |4 aut 
700 1 |a Schlaefer, Alexander  |d 1975-  |e VerfasserIn  |0 (DE-588)123043522  |0 (DE-627)566664453  |0 (DE-576)185081134  |4 aut 
700 1 |a Engelhardt, Sandy  |d 1987-  |e VerfasserIn  |0 (DE-588)1122674465  |0 (DE-627)876003080  |0 (DE-576)481436049  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 78(2022), Artikel-ID 102382, Seite 1-12  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Posterior temperature optimized Bayesian models for inverse problems in medical imaging 
773 1 8 |g volume:78  |g year:2022  |g elocationid:102382  |g pages:1-12  |g extent:12  |a Posterior temperature optimized Bayesian models for inverse problems in medical imaging 
856 4 0 |u https://doi.org/10.1016/j.media.2022.102382  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1361841522000342  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220613 
993 |a Article 
994 |a 2022 
998 |g 1122674465  |a Engelhardt, Sandy  |m 1122674465:Engelhardt, Sandy  |d 910000  |d 910100  |e 910000PE1122674465  |e 910100PE1122674465  |k 0/910000/  |k 1/910000/910100/  |p 4  |y j 
998 |g 1259770931  |a Tölle, Malte  |m 1259770931:Tölle, Malte  |d 910000  |d 910100  |e 910000PT1259770931  |e 910100PT1259770931  |k 0/910000/  |k 1/910000/910100/  |p 2 
999 |a KXP-PPN1806875764  |e 4149066922 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"part":{"text":"78(2022), Artikel-ID 102382, Seite 1-12","extent":"12","pages":"1-12","volume":"78","year":"2022"},"language":["eng"],"note":["Gesehen am 16.05.23"],"pubHistory":["1.1996/97 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Posterior temperature optimized Bayesian models for inverse problems in medical imagingMedical image analysis","titleAlt":[{"title":"Medical image analysis online"}],"recId":"306365081","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1497450-2"],"issn":["1361-8423"],"eki":["306365081"]},"title":[{"title_sort":"Medical image analysis","title":"Medical image analysis"}],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996","dateIssuedDisp":"1996-","publisher":"Elsevier Science"}]}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"May 2022"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Posterior temperature optimized Bayesian models for inverse problems in medical imaging","title":"Posterior temperature optimized Bayesian models for inverse problems in medical imaging"}],"id":{"eki":["1806875764"],"doi":["10.1016/j.media.2022.102382"]},"physDesc":[{"extent":"12 S."}],"person":[{"display":"Laves, Max-Heinrich","given":"Max-Heinrich","family":"Laves","role":"aut"},{"family":"Tölle","role":"aut","display":"Tölle, Malte","given":"Malte"},{"given":"Alexander","display":"Schlaefer, Alexander","role":"aut","family":"Schlaefer"},{"given":"Sandy","display":"Engelhardt, Sandy","family":"Engelhardt","role":"aut"}],"recId":"1806875764","note":["Available online 11 February 2022","Gesehen am 13.06.2022"],"language":["eng"],"name":{"displayForm":["Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt"]}} 
SRT |a LAVESMAXHEPOSTERIORT2022