Bayesian inference for general Gaussian graphical models with application to multivariate lattice data

We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dobra, Adrian (VerfasserIn) , Lenkoski, Alex (VerfasserIn) , Rodriguez, Abel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2011
In: Journal of the American Statistical Association
Year: 2011, Jahrgang: 106, Heft: 496, Pages: 1418-1433
ISSN:1537-274X
DOI:10.1198/jasa.2011.tm10465
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1198/jasa.2011.tm10465
Verlag, lizenzpflichtig, Volltext: https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10465
Volltext
Verfasserangaben:Adrian Dobra, Alex Lenkoski, and Abel Rodriguez

MARC

LEADER 00000caa a2200000 c 4500
001 1806883058
003 DE-627
005 20220820201110.0
007 cr uuu---uuuuu
008 220613s2011 xx |||||o 00| ||eng c
024 7 |a 10.1198/jasa.2011.tm10465  |2 doi 
035 |a (DE-627)1806883058 
035 |a (DE-599)KXP1806883058 
035 |a (OCoLC)1341461420 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dobra, Adrian  |e VerfasserIn  |0 (DE-588)1155517180  |0 (DE-627)1017789282  |0 (DE-576)501704256  |4 aut 
245 1 0 |a Bayesian inference for general Gaussian graphical models with application to multivariate lattice data  |c Adrian Dobra, Alex Lenkoski, and Abel Rodriguez 
264 1 |c 2011 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Elektronische Reproduktion der Druck-Ausgabe 
500 |a Published online: 24 January 2012 
500 |a Gesehen am 13.06.2022 
520 |a We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse estimation in multivariate lattice data, with a special emphasis on the analysis of spatial data. These models embed a great deal of flexibility in estimating both the correlation structure across outcomes and the spatial correlation structure, thereby allowing for adaptive smoothing and spatial autocorrelation parameters. Our methods are illustrated using a simulated example and a real-world application which concerns cancer mortality surveillance. Supplementary materials with computer code and the datasets needed to replicate our numerical results together with additional tables of results are available online. 
650 4 |a CAR model 
650 4 |a G-Wishart distribution 
650 4 |a Markov chain Monte Carlo (MCMC) simulation 
650 4 |a Spatial statistics 
700 1 |a Lenkoski, Alex  |e VerfasserIn  |0 (DE-588)116174486X  |0 (DE-627)1025194209  |0 (DE-576)506837386  |4 aut 
700 1 |a Rodriguez, Abel  |e VerfasserIn  |0 (DE-588)132935228  |0 (DE-627)528525190  |0 (DE-576)299513076  |4 aut 
773 0 8 |i Enthalten in  |a American Statistical Association  |t Journal of the American Statistical Association  |d Abingdon : Taylor & Francis, 1922  |g 106(2011), 496, Seite 1418-1433  |h Online-Ressource  |w (DE-627)339869887  |w (DE-600)2064981-2  |w (DE-576)10311596X  |x 1537-274X  |7 nnas 
773 1 8 |g volume:106  |g year:2011  |g number:496  |g pages:1418-1433  |g extent:16  |a Bayesian inference for general Gaussian graphical models with application to multivariate lattice data 
856 4 0 |u https://doi.org/10.1198/jasa.2011.tm10465  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10465  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220613 
993 |a Article 
994 |a 2011 
998 |g 116174486X  |a Lenkoski, Alex  |m 116174486X:Lenkoski, Alex  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PL116174486X  |e 110200PL116174486X  |e 110000PL116174486X  |e 110400PL116174486X  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1806883058  |e 4149079404 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Adrian Dobra, Alex Lenkoski, and Abel Rodriguez"]},"id":{"eki":["1806883058"],"doi":["10.1198/jasa.2011.tm10465"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"2011"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"American Statistical AssociationJournal of the American Statistical Association","note":["Gesehen am 29.09.22"],"corporate":[{"roleDisplay":"VerfasserIn","display":"American Statistical Association","role":"aut"}],"language":["eng"],"recId":"339869887","pubHistory":["18.1922/23 - ; auch mit durchgehender Nr.-Zählung"],"titleAlt":[{"title":"JASA"}],"part":{"pages":"1418-1433","issue":"496","year":"2011","extent":"16","volume":"106","text":"106(2011), 496, Seite 1418-1433"},"title":[{"title_sort":"Journal of the American Statistical Association","title":"Journal of the American Statistical Association","subtitle":"JASA ; the premier journal of statistical science"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1922-","dateIssuedKey":"1922","publisher":"Taylor & Francis ; Assoc.","publisherPlace":"Abingdon ; [Erscheinungsort nicht ermittelbar]"}],"id":{"issn":["1537-274X"],"zdb":["2064981-2"],"eki":["339869887"]}}],"physDesc":[{"extent":"16 S."}],"person":[{"given":"Adrian","family":"Dobra","role":"aut","roleDisplay":"VerfasserIn","display":"Dobra, Adrian"},{"given":"Alex","family":"Lenkoski","role":"aut","roleDisplay":"VerfasserIn","display":"Lenkoski, Alex"},{"family":"Rodriguez","given":"Abel","display":"Rodriguez, Abel","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Bayesian inference for general Gaussian graphical models with application to multivariate lattice data","title":"Bayesian inference for general Gaussian graphical models with application to multivariate lattice data"}],"language":["eng"],"recId":"1806883058","note":["Elektronische Reproduktion der Druck-Ausgabe","Published online: 24 January 2012","Gesehen am 13.06.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a DOBRAADRIABAYESIANIN2011