On BMO and Carleson measures on Riemannian manifolds

Let $\mathcal{M}$ be a Riemannian $n$-manifold with a metric such that the manifold is Ahlfors regular. We also assume either non-negative Ricci curvature or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \mathcal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brazke, Denis (VerfasserIn) , Schikorra, Armin (VerfasserIn) , Sire, Yannick (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2022
In: International mathematics research notices
Year: 2022, Heft: 2, Pages: 1245-1269
ISSN:1687-0247
DOI:10.1093/imrn/rnaa140
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnaa140
Volltext
Verfasserangaben:Denis Brazke, Armin Schikorra, and Yannick Sire

MARC

LEADER 00000caa a2200000 c 4500
001 1806912155
003 DE-627
005 20250114091856.0
007 cr uuu---uuuuu
008 220614s2022 xx |||||o 00| ||eng c
024 7 |a 10.1093/imrn/rnaa140  |2 doi 
035 |a (DE-627)1806912155 
035 |a (DE-599)KXP1806912155 
035 |a (OCoLC)1341461412 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Brazke, Denis  |d 1994-  |e VerfasserIn  |0 (DE-588)1236043944  |0 (DE-627)1761290487  |4 aut 
245 1 0 |a On BMO and Carleson measures on Riemannian manifolds  |c Denis Brazke, Armin Schikorra, and Yannick Sire 
264 1 |c January 2022 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.06.2022 
520 |a Let $\mathcal{M}$ be a Riemannian $n$-manifold with a metric such that the manifold is Ahlfors regular. We also assume either non-negative Ricci curvature or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \mathcal{M} \to \mathbb{R}$ by a Carleson measure condition of their $\sigma $-harmonic extension $U: \mathcal{M} \times (0,\infty ) \to \mathbb{R}$. We make crucial use of a $T(b)$ theorem proved by Hofmann, Mitrea, Mitrea, and Morris. As an application, we show that the famous theorem of Coifman-Lions-Meyer-Semmes holds in this class of manifolds: Jacobians of $W^{1,n}$-maps from $\mathcal{M}$ to $\mathbb{R}^n$ can be estimated against BMO-functions, which now follows from the arguments for commutators recently proposed by Lenzmann and the 2nd-named author using only harmonic extensions, integration by parts, and trace space characterizations. 
700 1 |a Schikorra, Armin  |d 1983-  |e VerfasserIn  |0 (DE-588)142664332  |0 (DE-627)638450373  |0 (DE-576)332703584  |4 aut 
700 1 |a Sire, Yannick  |e VerfasserIn  |0 (DE-588)1259900932  |0 (DE-627)1807046273  |4 aut 
773 0 8 |i Enthalten in  |t International mathematics research notices  |d Oxford : Oxford University Press, 1991  |g (2022), 2 vom: Jan., Seite 1245-1269  |h Online-Ressource  |w (DE-627)265549639  |w (DE-600)1465368-0  |w (DE-576)254482201  |x 1687-0247  |7 nnas  |a On BMO and Carleson measures on Riemannian manifolds 
773 1 8 |g year:2022  |g number:2  |g month:01  |g pages:1245-1269  |g extent:25  |a On BMO and Carleson measures on Riemannian manifolds 
856 4 0 |u https://doi.org/10.1093/imrn/rnaa140  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220614 
993 |a Article 
994 |a 2022 
998 |g 1236043944  |a Brazke, Denis  |m 1236043944:Brazke, Denis  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PB1236043944  |e 110200PB1236043944  |e 110000PB1236043944  |e 110400PB1236043944  |e 700000PB1236043944  |e 728500PB1236043944  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1806912155  |e 4149340064 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"On BMO and Carleson measures on Riemannian manifolds","title":"On BMO and Carleson measures on Riemannian manifolds"}],"person":[{"display":"Brazke, Denis","roleDisplay":"VerfasserIn","role":"aut","family":"Brazke","given":"Denis"},{"family":"Schikorra","given":"Armin","display":"Schikorra, Armin","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Sire","given":"Yannick","roleDisplay":"VerfasserIn","display":"Sire, Yannick","role":"aut"}],"recId":"1806912155","language":["eng"],"note":["Gesehen am 14.06.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1093/imrn/rnaa140"],"eki":["1806912155"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"January 2022"}],"name":{"displayForm":["Denis Brazke, Armin Schikorra, and Yannick Sire"]},"relHost":[{"name":{"displayForm":["Duke University"]},"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International mathematics research notices","subtitle":"IMRN","title_sort":"International mathematics research notices"}],"corporate":[{"display":"Duke University","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"recId":"265549639","disp":"On BMO and Carleson measures on Riemannian manifoldsInternational mathematics research notices","note":["Gesehen am 29.01.2025"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"extent":"25","text":"(2022), 2 vom: Jan., Seite 1245-1269","issue":"2","pages":"1245-1269","year":"2022"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"25 S."}]} 
SRT |a BRAZKEDENIONBMOANDCA2022