On BMO and Carleson measures on Riemannian manifolds
Let $\mathcal{M}$ be a Riemannian $n$-manifold with a metric such that the manifold is Ahlfors regular. We also assume either non-negative Ricci curvature or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \mathcal...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
January 2022
|
| In: |
International mathematics research notices
Year: 2022, Heft: 2, Pages: 1245-1269 |
| ISSN: | 1687-0247 |
| DOI: | 10.1093/imrn/rnaa140 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnaa140 |
| Verfasserangaben: | Denis Brazke, Armin Schikorra, and Yannick Sire |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1806912155 | ||
| 003 | DE-627 | ||
| 005 | 20250114091856.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220614s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imrn/rnaa140 |2 doi | |
| 035 | |a (DE-627)1806912155 | ||
| 035 | |a (DE-599)KXP1806912155 | ||
| 035 | |a (OCoLC)1341461412 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Brazke, Denis |d 1994- |e VerfasserIn |0 (DE-588)1236043944 |0 (DE-627)1761290487 |4 aut | |
| 245 | 1 | 0 | |a On BMO and Carleson measures on Riemannian manifolds |c Denis Brazke, Armin Schikorra, and Yannick Sire |
| 264 | 1 | |c January 2022 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.06.2022 | ||
| 520 | |a Let $\mathcal{M}$ be a Riemannian $n$-manifold with a metric such that the manifold is Ahlfors regular. We also assume either non-negative Ricci curvature or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \mathcal{M} \to \mathbb{R}$ by a Carleson measure condition of their $\sigma $-harmonic extension $U: \mathcal{M} \times (0,\infty ) \to \mathbb{R}$. We make crucial use of a $T(b)$ theorem proved by Hofmann, Mitrea, Mitrea, and Morris. As an application, we show that the famous theorem of Coifman-Lions-Meyer-Semmes holds in this class of manifolds: Jacobians of $W^{1,n}$-maps from $\mathcal{M}$ to $\mathbb{R}^n$ can be estimated against BMO-functions, which now follows from the arguments for commutators recently proposed by Lenzmann and the 2nd-named author using only harmonic extensions, integration by parts, and trace space characterizations. | ||
| 700 | 1 | |a Schikorra, Armin |d 1983- |e VerfasserIn |0 (DE-588)142664332 |0 (DE-627)638450373 |0 (DE-576)332703584 |4 aut | |
| 700 | 1 | |a Sire, Yannick |e VerfasserIn |0 (DE-588)1259900932 |0 (DE-627)1807046273 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International mathematics research notices |d Oxford : Oxford University Press, 1991 |g (2022), 2 vom: Jan., Seite 1245-1269 |h Online-Ressource |w (DE-627)265549639 |w (DE-600)1465368-0 |w (DE-576)254482201 |x 1687-0247 |7 nnas |a On BMO and Carleson measures on Riemannian manifolds |
| 773 | 1 | 8 | |g year:2022 |g number:2 |g month:01 |g pages:1245-1269 |g extent:25 |a On BMO and Carleson measures on Riemannian manifolds |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imrn/rnaa140 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220614 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1236043944 |a Brazke, Denis |m 1236043944:Brazke, Denis |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PB1236043944 |e 110200PB1236043944 |e 110000PB1236043944 |e 110400PB1236043944 |e 700000PB1236043944 |e 728500PB1236043944 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1806912155 |e 4149340064 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"On BMO and Carleson measures on Riemannian manifolds","title":"On BMO and Carleson measures on Riemannian manifolds"}],"person":[{"display":"Brazke, Denis","roleDisplay":"VerfasserIn","role":"aut","family":"Brazke","given":"Denis"},{"family":"Schikorra","given":"Armin","display":"Schikorra, Armin","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Sire","given":"Yannick","roleDisplay":"VerfasserIn","display":"Sire, Yannick","role":"aut"}],"recId":"1806912155","language":["eng"],"note":["Gesehen am 14.06.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1093/imrn/rnaa140"],"eki":["1806912155"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"January 2022"}],"name":{"displayForm":["Denis Brazke, Armin Schikorra, and Yannick Sire"]},"relHost":[{"name":{"displayForm":["Duke University"]},"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International mathematics research notices","subtitle":"IMRN","title_sort":"International mathematics research notices"}],"corporate":[{"display":"Duke University","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"recId":"265549639","disp":"On BMO and Carleson measures on Riemannian manifoldsInternational mathematics research notices","note":["Gesehen am 29.01.2025"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"extent":"25","text":"(2022), 2 vom: Jan., Seite 1245-1269","issue":"2","pages":"1245-1269","year":"2022"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"25 S."}]} | ||
| SRT | |a BRAZKEDENIONBMOANDCA2022 | ||