Segmental relaxations have macroscopic consequences in glassy polymer films

We have investigated the consequences of physical aging in thin spin-coated glassy polystyrene films through detailed dewetting studies. A simultaneous and equally fast exponential decay of dewetting velocity, width, and height of the rim with aging time was observed, which is related to a reduction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chowdhury, Mithun (VerfasserIn) , Freyberg, Paul (VerfasserIn) , Ziebert, Falko (VerfasserIn) , Yang, Arnold C.-M. (VerfasserIn) , Steiner, Ullrich (VerfasserIn) , Reiter, Günter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 September 2012
In: Physical review letters
Year: 2012, Jahrgang: 109, Heft: 13, Pages: 1-5
ISSN:1079-7114
DOI:10.1103/PhysRevLett.109.136102
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevLett.109.136102
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevLett.109.136102
Volltext
Verfasserangaben:Mithun Chowdhury, Paul Freyberg, Falko Ziebert, Arnold C.-M. Yang, Ullrich Steiner, and Günter Reiter
Beschreibung
Zusammenfassung:We have investigated the consequences of physical aging in thin spin-coated glassy polystyrene films through detailed dewetting studies. A simultaneous and equally fast exponential decay of dewetting velocity, width, and height of the rim with aging time was observed, which is related to a reduction of residual stresses within such films. The temperature dependence of these decay times followed an Arrhenius behavior, yielding an activation energy of 70±6 kJ/mol, on the same order of magnitude as values for the β-relaxation of polystyrene and for relaxations of surface topographical features. Our results suggest that rearrangements at the level of chain segments are sufficient to partially relax frozen-in out-of-equilibrium local chain conformations, i.e., the cause of residual stresses, and they might also be responsible for macroscopic relaxations at polymer surfaces.
Beschreibung:Gesehen am 27.09.2022
Beschreibung:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.109.136102