Patterns and intrinsic fluctuations in semi-dilute motor-filament systems

We perform Brownian dynamics simulations of molecular motor-induced ordering and structure formations in semi-dilute cytoskeletal filament solutions. In contrast to the previously studied dilute case where binary filament interactions prevail, the semi-dilute regime is characterized by multiple moto...

Full description

Saved in:
Bibliographic Details
Main Authors: Swaminathan, Sumanth (Author) , Ziebert, Falko (Author) , Aranson, Igor S. (Author) , Karpeev, D. (Author)
Format: Article (Journal)
Language:English
Published: 4 May 2010
In: epl
Year: 2010, Volume: 90, Issue: 2, Pages: 1-6
ISSN:1286-4854
DOI:10.1209/0295-5075/90/28001
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1209/0295-5075/90/28001
Get full text
Author Notes:S. Swaminathan, F. Ziebert, I.S. Aranson and D. Karpeev
Description
Summary:We perform Brownian dynamics simulations of molecular motor-induced ordering and structure formations in semi-dilute cytoskeletal filament solutions. In contrast to the previously studied dilute case where binary filament interactions prevail, the semi-dilute regime is characterized by multiple motor-mediated interactions. Moreover, the forces and torques exerted by motors on filaments are intrinsically fluctuating quantities. We incorporate the influences of thermal and motor fluctuations into our model as additive and multiplicative noises, respectively. Numerical simulations reveal that filament bundles and vortices emerge from a disordered initial state. Subsequent analysis of motor noise effects reveals: i) Pattern formation is very robust against fluctuations in motor force; ii) bundle formation is associated with a significant reduction of the motor fluctuation contributions; iii) the time scale of vortex formation and coalescence decreases with increases in motor noise amplitude.
Item Description:Gesehen am 23.09.2022
Physical Description:Online Resource
ISSN:1286-4854
DOI:10.1209/0295-5075/90/28001