Quantiles as optimal point forecasts

Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal point forecast. Quantiles arise as optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gneiting, Tilmann (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2011
In: International journal of forecasting
Year: 2011, Jahrgang: 27, Heft: 2, Pages: 197-207
ISSN:0169-2070
DOI:10.1016/j.ijforecast.2009.12.015
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ijforecast.2009.12.015
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0169207010000063
Volltext
Verfasserangaben:Tilmann Gneiting

MARC

LEADER 00000caa a2200000 c 4500
001 1807903761
003 DE-627
005 20220820205518.0
007 cr uuu---uuuuu
008 220627s2011 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ijforecast.2009.12.015  |2 doi 
035 |a (DE-627)1807903761 
035 |a (DE-599)KXP1807903761 
035 |a (OCoLC)1341461709 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gneiting, Tilmann  |e VerfasserIn  |0 (DE-588)1019627484  |0 (DE-627)690974809  |0 (DE-576)358470323  |4 aut 
245 1 0 |a Quantiles as optimal point forecasts  |c Tilmann Gneiting 
264 1 |c 2011 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 7 March 2010 
500 |a Gesehen am 27.06.2022 
520 |a Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal point forecast. Quantiles arise as optimal point forecasts under a general class of economically relevant loss functions, which nests the asymmetric piecewise linear loss, and which we refer to as generalized piecewise linear (GPL). The level of the quantile depends on a generic asymmetry parameter which reflects the possibly distinct costs of underprediction and overprediction. Conversely, a loss function for which quantiles are optimal point forecasts is necessarily GPL. We review characterizations of this type in the work of Thomson, Saerens and Komunjer, and relate to proper scoring rules, incentive-compatible compensation schemes and quantile regression. In the empirical part of the paper, the relevance of decision theoretic guidance in the transition from a predictive distribution to a point forecast is illustrated using the Bank of England’s density forecasts of United Kingdom inflation rates, and probabilistic predictions of wind energy resources in the Pacific Northwest. 
650 4 |a Decision making 
650 4 |a Density forecasts 
650 4 |a Incentive-compatible compensation scheme 
650 4 |a Loss function 
650 4 |a Piecewise linear 
650 4 |a Proper scoring rule 
650 4 |a Quantile 
773 0 8 |i Enthalten in  |t International journal of forecasting  |d Amsterdam [u.a.] : Elsevier Science, 1985  |g 27(2011), 2 vom: Apr./Juni, Seite 197-207  |h Online-Ressource  |w (DE-627)306313154  |w (DE-600)1495951-3  |w (DE-576)080987435  |x 0169-2070  |7 nnas  |a Quantiles as optimal point forecasts 
773 1 8 |g volume:27  |g year:2011  |g number:2  |g month:04/06  |g pages:197-207  |g extent:11  |a Quantiles as optimal point forecasts 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Gneiting, Tilmann  |t Quantiles as optimal point forecasts  |d 2011  |w (DE-627)1628555335  |w (DE-576)358496403 
856 4 0 |u https://doi.org/10.1016/j.ijforecast.2009.12.015  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0169207010000063  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220627 
993 |a Article 
994 |a 2011 
998 |g 1019627484  |a Gneiting, Tilmann  |m 1019627484:Gneiting, Tilmann  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PG1019627484  |e 110200PG1019627484  |e 110000PG1019627484  |e 110400PG1019627484  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1807903761  |e 4156875210 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Quantiles as optimal point forecasts","title_sort":"Quantiles as optimal point forecasts"}],"person":[{"family":"Gneiting","given":"Tilmann","display":"Gneiting, Tilmann","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1807903761","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Available online 7 March 2010","Gesehen am 27.06.2022"],"id":{"eki":["1807903761"],"doi":["10.1016/j.ijforecast.2009.12.015"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"2011"}],"name":{"displayForm":["Tilmann Gneiting"]},"relHost":[{"title":[{"title":"International journal of forecasting","title_sort":"International journal of forecasting"}],"part":{"volume":"27","text":"27(2011), 2 vom: Apr./Juni, Seite 197-207","extent":"11","year":"2011","pages":"197-207","issue":"2"},"pubHistory":["1.1985 -"],"recId":"306313154","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.05.2020"],"disp":"Quantiles as optimal point forecastsInternational journal of forecasting","id":{"issn":["0169-2070"],"zdb":["1495951-3"],"eki":["306313154"]},"origin":[{"dateIssuedDisp":"1985-","dateIssuedKey":"1985","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"11 S."}]} 
SRT |a GNEITINGTIQUANTILESA2011