Quantiles as optimal point forecasts
Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal point forecast. Quantiles arise as optim...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2011
|
| In: |
International journal of forecasting
Year: 2011, Jahrgang: 27, Heft: 2, Pages: 197-207 |
| ISSN: | 0169-2070 |
| DOI: | 10.1016/j.ijforecast.2009.12.015 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ijforecast.2009.12.015 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0169207010000063 |
| Verfasserangaben: | Tilmann Gneiting |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1807903761 | ||
| 003 | DE-627 | ||
| 005 | 20220820205518.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220627s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.ijforecast.2009.12.015 |2 doi | |
| 035 | |a (DE-627)1807903761 | ||
| 035 | |a (DE-599)KXP1807903761 | ||
| 035 | |a (OCoLC)1341461709 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gneiting, Tilmann |e VerfasserIn |0 (DE-588)1019627484 |0 (DE-627)690974809 |0 (DE-576)358470323 |4 aut | |
| 245 | 1 | 0 | |a Quantiles as optimal point forecasts |c Tilmann Gneiting |
| 264 | 1 | |c 2011 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 7 March 2010 | ||
| 500 | |a Gesehen am 27.06.2022 | ||
| 520 | |a Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal point forecast. Quantiles arise as optimal point forecasts under a general class of economically relevant loss functions, which nests the asymmetric piecewise linear loss, and which we refer to as generalized piecewise linear (GPL). The level of the quantile depends on a generic asymmetry parameter which reflects the possibly distinct costs of underprediction and overprediction. Conversely, a loss function for which quantiles are optimal point forecasts is necessarily GPL. We review characterizations of this type in the work of Thomson, Saerens and Komunjer, and relate to proper scoring rules, incentive-compatible compensation schemes and quantile regression. In the empirical part of the paper, the relevance of decision theoretic guidance in the transition from a predictive distribution to a point forecast is illustrated using the Bank of England’s density forecasts of United Kingdom inflation rates, and probabilistic predictions of wind energy resources in the Pacific Northwest. | ||
| 650 | 4 | |a Decision making | |
| 650 | 4 | |a Density forecasts | |
| 650 | 4 | |a Incentive-compatible compensation scheme | |
| 650 | 4 | |a Loss function | |
| 650 | 4 | |a Piecewise linear | |
| 650 | 4 | |a Proper scoring rule | |
| 650 | 4 | |a Quantile | |
| 773 | 0 | 8 | |i Enthalten in |t International journal of forecasting |d Amsterdam [u.a.] : Elsevier Science, 1985 |g 27(2011), 2 vom: Apr./Juni, Seite 197-207 |h Online-Ressource |w (DE-627)306313154 |w (DE-600)1495951-3 |w (DE-576)080987435 |x 0169-2070 |7 nnas |a Quantiles as optimal point forecasts |
| 773 | 1 | 8 | |g volume:27 |g year:2011 |g number:2 |g month:04/06 |g pages:197-207 |g extent:11 |a Quantiles as optimal point forecasts |
| 776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Gneiting, Tilmann |t Quantiles as optimal point forecasts |d 2011 |w (DE-627)1628555335 |w (DE-576)358496403 |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.ijforecast.2009.12.015 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0169207010000063 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220627 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 1019627484 |a Gneiting, Tilmann |m 1019627484:Gneiting, Tilmann |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PG1019627484 |e 110200PG1019627484 |e 110000PG1019627484 |e 110400PG1019627484 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1807903761 |e 4156875210 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Quantiles as optimal point forecasts","title_sort":"Quantiles as optimal point forecasts"}],"person":[{"family":"Gneiting","given":"Tilmann","display":"Gneiting, Tilmann","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1807903761","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Available online 7 March 2010","Gesehen am 27.06.2022"],"id":{"eki":["1807903761"],"doi":["10.1016/j.ijforecast.2009.12.015"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"2011"}],"name":{"displayForm":["Tilmann Gneiting"]},"relHost":[{"title":[{"title":"International journal of forecasting","title_sort":"International journal of forecasting"}],"part":{"volume":"27","text":"27(2011), 2 vom: Apr./Juni, Seite 197-207","extent":"11","year":"2011","pages":"197-207","issue":"2"},"pubHistory":["1.1985 -"],"recId":"306313154","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.05.2020"],"disp":"Quantiles as optimal point forecastsInternational journal of forecasting","id":{"issn":["0169-2070"],"zdb":["1495951-3"],"eki":["306313154"]},"origin":[{"dateIssuedDisp":"1985-","dateIssuedKey":"1985","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"11 S."}]} | ||
| SRT | |a GNEITINGTIQUANTILESA2011 | ||