The higher order fractional Calderón problem for linear local operators: Uniqueness
We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the exterior Dirichle...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
21 February 2022
|
| In: |
Advances in mathematics
Year: 2022, Jahrgang: 399, Pages: 1-29 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2022.108246 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2022.108246 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870822000627 |
| Verfasserangaben: | Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1808022637 | ||
| 003 | DE-627 | ||
| 005 | 20220820205652.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220628s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2022.108246 |2 doi | |
| 035 | |a (DE-627)1808022637 | ||
| 035 | |a (DE-599)KXP1808022637 | ||
| 035 | |a (OCoLC)1341461867 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Covi, Giovanni |e VerfasserIn |0 (DE-588)1233397397 |0 (DE-627)1757753036 |4 aut | |
| 245 | 1 | 4 | |a The higher order fractional Calderón problem for linear local operators |b Uniqueness |c Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann |
| 264 | 1 | |c 21 February 2022 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.06.2022 | ||
| 520 | |a We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the exterior Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations. | ||
| 650 | 4 | |a Fractional Calderón problem | |
| 650 | 4 | |a Fractional Schrödinger equation | |
| 650 | 4 | |a Inverse problems | |
| 650 | 4 | |a Sobolev multipliers | |
| 700 | 1 | |a Mönkkönen, Keijo |e VerfasserIn |4 aut | |
| 700 | 1 | |a Railo, Jesse |e VerfasserIn |4 aut | |
| 700 | 1 | |a Uhlmann, Gunther |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 399(2022) vom: 16. Apr., Artikel-ID 108246, Seite 1-29 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a The higher order fractional Calderón problem for linear local operators Uniqueness |
| 773 | 1 | 8 | |g volume:399 |g year:2022 |g day:16 |g month:04 |g elocationid:108246 |g pages:1-29 |g extent:29 |a The higher order fractional Calderón problem for linear local operators Uniqueness |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2022.108246 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0001870822000627 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220628 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1233397397 |a Covi, Giovanni |m 1233397397:Covi, Giovanni |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PC1233397397 |e 110200PC1233397397 |e 110000PC1233397397 |e 110400PC1233397397 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1808022637 |e 4157179234 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"subtitle":"Uniqueness","title":"The higher order fractional Calderón problem for linear local operators","title_sort":"higher order fractional Calderón problem for linear local operators"}],"person":[{"roleDisplay":"VerfasserIn","display":"Covi, Giovanni","role":"aut","family":"Covi","given":"Giovanni"},{"given":"Keijo","family":"Mönkkönen","role":"aut","roleDisplay":"VerfasserIn","display":"Mönkkönen, Keijo"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Railo, Jesse","given":"Jesse","family":"Railo"},{"family":"Uhlmann","given":"Gunther","roleDisplay":"VerfasserIn","display":"Uhlmann, Gunther","role":"aut"}],"language":["eng"],"recId":"1808022637","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.06.2022"],"id":{"doi":["10.1016/j.aim.2022.108246"],"eki":["1808022637"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"21 February 2022"}],"name":{"displayForm":["Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"origin":[{"dateIssuedDisp":"1961-","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedKey":"1961","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"part":{"extent":"29","volume":"399","text":"399(2022) vom: 16. Apr., Artikel-ID 108246, Seite 1-29","pages":"1-29","year":"2022"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"language":["eng"],"recId":"268759200","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.09.2020"],"disp":"The higher order fractional Calderón problem for linear local operators UniquenessAdvances in mathematics","title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}]}],"physDesc":[{"extent":"29 S."}]} | ||
| SRT | |a COVIGIOVANHIGHERORDE2120 | ||