The higher order fractional Calderón problem for linear local operators: Uniqueness

We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the exterior Dirichle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Covi, Giovanni (VerfasserIn) , Mönkkönen, Keijo (VerfasserIn) , Railo, Jesse (VerfasserIn) , Uhlmann, Gunther (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 February 2022
In: Advances in mathematics
Year: 2022, Jahrgang: 399, Pages: 1-29
ISSN:1090-2082
DOI:10.1016/j.aim.2022.108246
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2022.108246
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870822000627
Volltext
Verfasserangaben:Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann

MARC

LEADER 00000caa a2200000 c 4500
001 1808022637
003 DE-627
005 20220820205652.0
007 cr uuu---uuuuu
008 220628s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2022.108246  |2 doi 
035 |a (DE-627)1808022637 
035 |a (DE-599)KXP1808022637 
035 |a (OCoLC)1341461867 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Covi, Giovanni  |e VerfasserIn  |0 (DE-588)1233397397  |0 (DE-627)1757753036  |4 aut 
245 1 4 |a The higher order fractional Calderón problem for linear local operators  |b Uniqueness  |c Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann 
264 1 |c 21 February 2022 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.06.2022 
520 |a We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the exterior Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations. 
650 4 |a Fractional Calderón problem 
650 4 |a Fractional Schrödinger equation 
650 4 |a Inverse problems 
650 4 |a Sobolev multipliers 
700 1 |a Mönkkönen, Keijo  |e VerfasserIn  |4 aut 
700 1 |a Railo, Jesse  |e VerfasserIn  |4 aut 
700 1 |a Uhlmann, Gunther  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 399(2022) vom: 16. Apr., Artikel-ID 108246, Seite 1-29  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a The higher order fractional Calderón problem for linear local operators Uniqueness 
773 1 8 |g volume:399  |g year:2022  |g day:16  |g month:04  |g elocationid:108246  |g pages:1-29  |g extent:29  |a The higher order fractional Calderón problem for linear local operators Uniqueness 
856 4 0 |u https://doi.org/10.1016/j.aim.2022.108246  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870822000627  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220628 
993 |a Article 
994 |a 2022 
998 |g 1233397397  |a Covi, Giovanni  |m 1233397397:Covi, Giovanni  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PC1233397397  |e 110200PC1233397397  |e 110000PC1233397397  |e 110400PC1233397397  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1808022637  |e 4157179234 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"subtitle":"Uniqueness","title":"The higher order fractional Calderón problem for linear local operators","title_sort":"higher order fractional Calderón problem for linear local operators"}],"person":[{"roleDisplay":"VerfasserIn","display":"Covi, Giovanni","role":"aut","family":"Covi","given":"Giovanni"},{"given":"Keijo","family":"Mönkkönen","role":"aut","roleDisplay":"VerfasserIn","display":"Mönkkönen, Keijo"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Railo, Jesse","given":"Jesse","family":"Railo"},{"family":"Uhlmann","given":"Gunther","roleDisplay":"VerfasserIn","display":"Uhlmann, Gunther","role":"aut"}],"language":["eng"],"recId":"1808022637","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.06.2022"],"id":{"doi":["10.1016/j.aim.2022.108246"],"eki":["1808022637"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"21 February 2022"}],"name":{"displayForm":["Giovanni Covi, Keijo Mönkkönen, Jesse Railo, Gunther Uhlmann"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"origin":[{"dateIssuedDisp":"1961-","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedKey":"1961","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"part":{"extent":"29","volume":"399","text":"399(2022) vom: 16. Apr., Artikel-ID 108246, Seite 1-29","pages":"1-29","year":"2022"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"language":["eng"],"recId":"268759200","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.09.2020"],"disp":"The higher order fractional Calderón problem for linear local operators UniquenessAdvances in mathematics","title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}]}],"physDesc":[{"extent":"29 S."}]} 
SRT |a COVIGIOVANHIGHERORDE2120