Ephemeral learning: augmenting triggers with online-trained normalizing flows

The large data rates at the LHC require an online trigger system to select relevant collisions. Rather than compressing individual events, we propose to compress an entire data set at once. We use a normalizing flow as a deep generative model to learn the probability density of the data online. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Diefenbacher, Sascha (VerfasserIn) , Kasieczka, Gregor (VerfasserIn) , Nachman, Benjamin (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Shih, David (VerfasserIn) , Winterhalder, Ramon (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 28 Jun 2022
Ausgabe:Version v2
In: Arxiv
Year: 2022, Pages: 1-17
DOI:10.48550/arXiv.2202.09375
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2202.09375
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2202.09375
Volltext
Verfasserangaben:Anja Butter, Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, David Shih, and Ramon Winterhalder
Beschreibung
Zusammenfassung:The large data rates at the LHC require an online trigger system to select relevant collisions. Rather than compressing individual events, we propose to compress an entire data set at once. We use a normalizing flow as a deep generative model to learn the probability density of the data online. The events are then represented by the generative neural network and can be inspected offline for anomalies or used for other analysis purposes. We demonstrate our new approach for a toy model and a correlation-enhanced bump hunt.
Beschreibung:Version 1 vom 28 Junuar 2022, Version 2 vom 18 Februar 2022
Gesehen am 15.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2202.09375