Ephemeral learning: augmenting triggers with online-trained normalizing flows

The large data rates at the LHC require an online trigger system to select relevant collisions. Rather than compressing individual events, we propose to compress an entire data set at once. We use a normalizing flow as a deep generative model to learn the probability density of the data online. The...

Full description

Saved in:
Bibliographic Details
Main Authors: Butter, Anja (Author) , Diefenbacher, Sascha (Author) , Kasieczka, Gregor (Author) , Nachman, Benjamin (Author) , Plehn, Tilman (Author) , Shih, David (Author) , Winterhalder, Ramon (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 28 Jun 2022
Edition:Version v2
In: Arxiv
Year: 2022, Pages: 1-17
DOI:10.48550/arXiv.2202.09375
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2202.09375
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2202.09375
Get full text
Author Notes:Anja Butter, Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, David Shih, and Ramon Winterhalder
Search Result 1

Ephemeral learning: augmenting triggers with online-trained normalizing flows by Butter, Anja (Author) , Diefenbacher, Sascha (Author) , Kasieczka, Gregor (Author) , Nachman, Benjamin (Author) , Plehn, Tilman (Author) , Shih, David (Author) , Winterhalder, Ramon (Author) ,


Get full text
Article (Journal) Online Resource