Calomplification: the power of generative calorimeter models

Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bieringer, Sebastian (VerfasserIn) , Butter, Anja (VerfasserIn) , Diefenbacher, Sascha (VerfasserIn) , Eren, Engin (VerfasserIn) , Gaede, Frank (VerfasserIn) , Hundhausen, Daniel (VerfasserIn) , Kasieczka, Gregor (VerfasserIn) , Nachman, Benjamin (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Trabs, Mathias (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 9 May 2022
In: Arxiv
Year: 2022, Pages: 1-17
DOI:10.48550/arXiv.2202.07352
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2202.07352
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2202.07352
Volltext
Verfasserangaben:Sebastian Bieringer, Anja Butter, Sascha Diefenbacher, Engin Eren, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, and Mathias Trabs
Beschreibung
Zusammenfassung:Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter.
Beschreibung:Gesehen am 15.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2202.07352