Back to the formula: LHC edition

While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We show how symbolic regression trained on matrix-element information provides, for instance, optimal LHC observables in an easily interpretable form. W...

Full description

Saved in:
Bibliographic Details
Main Authors: Butter, Anja (Author) , Plehn, Tilman (Author) , Soybelman, Nathalie (Author) , Brehmer, Johann (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 15 Nov 2021
In: Arxiv
Year: 2021, Pages: 1-29
DOI:10.48550/arXiv.2109.10414
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.10414
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.10414
Get full text
Author Notes:Anja Butter, Tilman Plehn, Nathalie Soybelman, and Johann Brehmer
Search Result 1

Back to the formula - LHC edition by Butter, Anja (Author) , Plehn, Tilman (Author) , Soybelman, Nathalie (Author) , Brehmer, Johann (Author) ,


Get full text
Article (Journal) Online Resource