Topological phase transitions in four dimensions

We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization...

Full description

Saved in:
Bibliographic Details
Main Authors: Defenu, Nicolò (Author) , Trombettoni, Andrea (Author) , Zappalà, Dario (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Nuclear physics. B, Particle physics
Year: 2021, Volume: 964, Pages: 1-19
ISSN:1873-1562
DOI:10.1016/j.nuclphysb.2020.115295
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.nuclphysb.2020.115295
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0550321320303801
Get full text
Author Notes:Nicolò Defenu, Andrea Trombettoni, Dario Zappalà
Description
Summary:We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization group flow equation of its couplings, showing that the critical value of the frequency is the square of the corresponding value in 2D. The value of the anomalous dimension at the critical point is determined (η=1/32) and a conjecture for the universal jump of the superfluid stiffness (4/π2) presented.
Item Description:Available online 28 December 2020
Gesehen am 14.09.2022
Physical Description:Online Resource
ISSN:1873-1562
DOI:10.1016/j.nuclphysb.2020.115295