Exact thermodynamic Casimir forces for an interacting three-dimensional model system in film geometry with free surfaces

The limit n → ∞ of the classical O(n) ϕ4 model on a 3d film with free surfaces is studied. Its exact solution involves a self-consistent 1d Schrödinger equation, which is solved numerically for a partially discretized as well as for a fully discrete lattice model. Extremely precise results are obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diehl, Hans-Werner (VerfasserIn) , Grüneberg, Daniel (VerfasserIn) , Hasenbusch, Martin (VerfasserIn) , Hucht, Alfred (VerfasserIn) , Rutkevich, Sergei B. (VerfasserIn) , Schmidt, Felix M. (VerfasserIn)
Dokumenttyp: Article (Journal) Editorial
Sprache:Englisch
Veröffentlicht: 16 October 2012
In: epl
Year: 2012, Jahrgang: 100, Heft: 1, Pages: 1-5
ISSN:1286-4854
DOI:10.1209/0295-5075/100/10004
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1209/0295-5075/100/10004
Volltext
Verfasserangaben:H.W. Diehl, Daniel Grüneberg, Martin Hasenbusch, Alfred Hucht, Sergei B. Rutkevich, Felix M. Schmidt
Beschreibung
Zusammenfassung:The limit n → ∞ of the classical O(n) ϕ4 model on a 3d film with free surfaces is studied. Its exact solution involves a self-consistent 1d Schrödinger equation, which is solved numerically for a partially discretized as well as for a fully discrete lattice model. Extremely precise results are obtained for the scaled Casimir force at all temperatures. Obtained via a single framework, they exhibit all relevant qualitative features of the thermodynamic Casimir force known from wetting experiments on 4He and Monte Carlo simulations, including a pronounced minimum below the bulk critical point.
Beschreibung:Gesehen am 14.09.2022
Beschreibung:Online Resource
ISSN:1286-4854
DOI:10.1209/0295-5075/100/10004