Critical behavior of three-dimensional Ising spin glass models

We perform high-statistics Monte Carlo simulations of three-dimensional Ising spin glass models on cubic lattices of size L: the ±J (Edwards-Anderson) Ising model for two values of the disorder parameter p, p=0.5 and p=0.7 (up to L=28 and L=20, respectively), and the bond-diluted bimodal model for b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasenbusch, Martin (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 December 2008
In: Physical review. B, Condensed matter and materials physics
Year: 2008, Jahrgang: 78, Heft: 21, Pages: 1-23
ISSN:1550-235X
DOI:10.1103/PhysRevB.78.214205
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.78.214205
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.78.214205
Volltext
Verfasserangaben:Martin Hasenbusch, Andrea Pelissetto, and Ettore Vicari

MARC

LEADER 00000caa a2200000 c 4500
001 1808724135
003 DE-627
005 20220909115709.0
007 cr uuu---uuuuu
008 220630s2008 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevB.78.214205  |2 doi 
035 |a (DE-627)1808724135 
035 |a (DE-599)KXP1808724135 
035 |a (OCoLC)1341463341 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Hasenbusch, Martin  |e VerfasserIn  |0 (DE-588)1198238046  |0 (DE-627)1680556584  |4 aut 
245 1 0 |a Critical behavior of three-dimensional Ising spin glass models  |c Martin Hasenbusch, Andrea Pelissetto, and Ettore Vicari 
264 1 |c 17 December 2008 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.09.2022 
520 |a We perform high-statistics Monte Carlo simulations of three-dimensional Ising spin glass models on cubic lattices of size L: the ±J (Edwards-Anderson) Ising model for two values of the disorder parameter p, p=0.5 and p=0.7 (up to L=28 and L=20, respectively), and the bond-diluted bimodal model for bond-occupation probability pb=0.45 (up to L=16). The finite-size behavior of the quartic cumulants at the critical point allows us to check very accurately that these models belong to the same universality class. Moreover, it allows us to estimate the scaling-correction exponent ω related to the leading irrelevant operator: ω=1.0(1). Shorter Monte Carlo simulations of the bond-diluted bimodal models at pb=0.7 and pb=0.35 (up to L=10) and of the Ising spin glass model with Gaussian bond distribution (up to L=8) also support the existence of a unique Ising spin glass universality class. A careful finite-size analysis of the Monte Carlo data which takes into account the analytic and the nonanalytic corrections to scaling allows us to obtain precise and reliable estimates of the critical exponents. We obtain ν=2.45(15) and η=−0.375(10). 
700 1 |a Pelissetto, Andrea  |e VerfasserIn  |0 (DE-588)1261896173  |0 (DE-627)1809284023  |4 aut 
700 1 |a Vicari, Ettore  |d 1962-  |e VerfasserIn  |0 (DE-588)1261896270  |0 (DE-627)1809284171  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. B, Condensed matter and materials physics  |d College Park, Md. : APS, 1998  |g 78(2008), 21, Artikel-ID 214205, Seite 1-23  |h Online-Ressource  |w (DE-627)268760349  |w (DE-600)1473011-X  |w (DE-576)077610237  |x 1550-235X  |7 nnas  |a Critical behavior of three-dimensional Ising spin glass models 
773 1 8 |g volume:78  |g year:2008  |g number:21  |g elocationid:214205  |g pages:1-23  |g extent:23  |a Critical behavior of three-dimensional Ising spin glass models 
856 4 0 |u https://doi.org/10.1103/PhysRevB.78.214205  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevB.78.214205  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220630 
993 |a Article 
994 |a 2008 
998 |g 1198238046  |a Hasenbusch, Martin  |m 1198238046:Hasenbusch, Martin  |p 1  |x j 
999 |a KXP-PPN1808724135  |e 4159705855 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1808724135","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 09.09.2022"],"title":[{"title":"Critical behavior of three-dimensional Ising spin glass models","title_sort":"Critical behavior of three-dimensional Ising spin glass models"}],"person":[{"given":"Martin","family":"Hasenbusch","role":"aut","display":"Hasenbusch, Martin","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Pelissetto, Andrea","roleDisplay":"VerfasserIn","given":"Andrea","family":"Pelissetto"},{"given":"Ettore","family":"Vicari","role":"aut","display":"Vicari, Ettore","roleDisplay":"VerfasserIn"}],"relHost":[{"note":["Gesehen am 03.11.25"],"disp":"Critical behavior of three-dimensional Ising spin glass modelsPhysical review. B, Condensed matter and materials physics","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"recId":"268760349","pubHistory":["3. Series, volume 57, issue 1 (January 1998)-volume 92, issue 24 (December 2015)"],"titleAlt":[{"title":"Physical review / B"},{"title":"B online"}],"part":{"pages":"1-23","issue":"21","year":"2008","extent":"23","volume":"78","text":"78(2008), 21, Artikel-ID 214205, Seite 1-23"},"title":[{"partname":"Condensed matter and materials physics","title_sort":"Physical review","title":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["The American Physical Society"]},"origin":[{"publisherPlace":"College Park, Md.","dateIssuedDisp":"1998-2015","publisher":"APS","dateIssuedKey":"1998"}],"id":{"zdb":["1473011-X"],"eki":["268760349"],"issn":["1550-235X"]}}],"physDesc":[{"extent":"23 S."}],"id":{"doi":["10.1103/PhysRevB.78.214205"],"eki":["1808724135"]},"origin":[{"dateIssuedKey":"2008","dateIssuedDisp":"17 December 2008"}],"name":{"displayForm":["Martin Hasenbusch, Andrea Pelissetto, and Ettore Vicari"]}} 
SRT |a HASENBUSCHCRITICALBE1720