Magnetic-glassy multicritical behavior of the three-dimensional ±J Ising model

We consider the three-dimensional ±J model defined on a simple cubic lattice and study its behavior close to the multicritical Nishimori point, where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the ferromagnetic-glassy transition lines meet in the T−p phase diagram (p characterizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasenbusch, Martin (VerfasserIn) , Toldin, Francesco Parisen (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 November 2007
In: Physical review. B, Condensed matter and materials physics
Year: 2007, Jahrgang: 76, Heft: 18, Pages: 1-7
ISSN:1550-235X
DOI:10.1103/PhysRevB.76.184202
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.76.184202
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.76.184202
Volltext
Verfasserangaben:Martin Hasenbusch, Francesco Parisen Toldin, Andrea Pelissetto, and Ettore Vicari
Beschreibung
Zusammenfassung:We consider the three-dimensional ±J model defined on a simple cubic lattice and study its behavior close to the multicritical Nishimori point, where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the ferromagnetic-glassy transition lines meet in the T−p phase diagram (p characterizes the disorder distribution and gives the fraction of ferromagnetic bonds). For this purpose, we perform Monte Carlo simulations on cubic lattices of size L⩽32 and a finite-size-scaling analysis of the numerical results. The magnetic-glassy multicritical point is found at p∗=0.76820(4), along the Nishimori line given by 2p−1=tanh(J∕T). We determine the renormalization-group dimensions of the operators that control the renormalization-group flow close to the multicritical point, y1=1.02(5), y2=0.61(2), and the susceptibility exponent η=−0.114(3). The temperature and crossover exponents are ν=1∕y2=1.64(5) and ϕ=y1∕y2=1.67(10), respectively. We also investigate the model-A dynamics, obtaining the dynamic critical exponent z=5.0(5).
Beschreibung:Im Titel ist "+" hochgestellt und "-" tiefgestellt
Gesehen am 09.09.2022
Beschreibung:Online Resource
ISSN:1550-235X
DOI:10.1103/PhysRevB.76.184202